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Everywhere divergence of the one-sided

ergodic Hilbert transform and Liouville

numbers

David Constantine and Joanna Furno

Abstract. We prove some results on the behavior of infinite sums of
the form

∑
f◦Tn(x) 1

n
, where T : S1

→ S1 is an irrational circle rotation

and f is a mean-zero function on S1. In particular, we show that for
a certain class of functions f , there are Liouville α for which this sum
diverges everywhere. We also show that there are Liouville α for which
the sum converges everywhere.
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1. Introduction

Question. Let (X,B, µ) be a probability measure space. Let T be an invert-
ible, measure-preserving, ergodic transformation on (X,B, µ). Let

∑

bn be
a positive, divergent series. Under what conditions do sums of the form

(1)

∞
∑

n=1

f ◦ T n(x)bn

1
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converge or diverge?

In the specific case bn = 1
n , the sum (1) is known as the one-sided ergodic

Hilbert transform of f . Its convergence properties are of interest in part
because convergence of equation (1) ensures convergence of the Birkhoff
sums, and so results on the convergence or divergence of equation (1) provide
a stronger version of Birkhoff’s theorem, or indicate that no strengthening
in this direction is possible.

For a fixed transformation T , conditions under which one-sided ergodic
Hilbert transforms converge are very well studied. The first study of con-
vergence was by Izumi in [Izu39]. Following Izumi’s work, Halmos showed
in [Hal49] that if the measure is non-atomic, then there are L2 functions
f for which (1) diverges for almost every x. Similarly, Dowker and Erdös
showed in [DE59] showed that if the measure is nonatomic, then there are
L∞ functions f for which (1) diverges for almost every x.

Kakutani and Petersen in [KP81] extended the results of Dowker and
Erdös to show that mean zero functions for which the supremum of the
norms of the partial sums of (1) is infinite for a.e. x always exist in L∞

(see, similarly, [Krz80]). In [dJR79], del Junco and Rosenblatt show that
a.e.-divergence is generic in the function f . These results have been of the
following form: given T , bn, x, there exist mean zero functions f (with some
regularity properties specified – continuous f are possible, see [dJR79]) such
that the sum (1) diverges. Often, a careful study of the regularity of f or
its Fourier coefficients plays a key role.

Divergent sum behavior has subsequently been investigated in very gen-
eral contexts. [BW09] provides a monograph-length treatment of the sub-
ject, and [AL07] provides a good overview of work in the general setting of
contracting operators on Banach spaces. Further results can also be found
in [Cun09], [CL10], [CCL10], and [LSS15].

In contrast to these general settings and the non-constructive proofs that
appear, we will demonstrate divergence in the case of the simple and well-
understood dynamics of circle rotations, with specific random variables f
that are quite simple – essentially indicator functions of intervals.

Let α ∈ (0, 1) be an irrational number and let T := Rα be the rotation
by α on S1 = R/Z. That is, Tx = x+ α (mod 1). Let f : S1 → R be any
mean zero function on S1 with respect to the Lebesgue measure.

Definition 1.1. Given T = Rα, we say α is convergent or divergent for a
point x and a function f according to the behavior of the series (1).

In Section 3 below we prove our first main theorem:

Theorem 1. Let bn = 1
n and let f = 2χU − 1 where U is a finite union of

disjoint intervals with m(U) = 1/2. Then there are irrational α which are
divergent for all points x. Such an α can be provided explicitly in terms of
its continued fraction expansion.
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We will call functions like f mean-zero indicator functions for a finite
union of intervals. Given α, the reader can easily construct a mean-zero
indicator function for a countable union of intervals for which divergence
everywhere will fail.

Previous work on this problem has mainly used tools from functional
analysis, and has produced results for almost every x. Some exceptions to
this can be found in [FS] and [BW09], but in each case some regularity or f
or additional assumptions on its Fourier series are required. A key difference
in Theorem 1 – and our subsequent theorems – is that we prove divergence
for all x.

There are several straightforward consequences of the proof of Theorem
1. First, the set of divergent α is dense. Second, α can be taken to depend
on f only through the number of intervals in U . Third, one can replace 1

n
with any sequence bn such that

∑

n(bn+1 − bn) diverges.
In Section 4, we investigate the set of divergent α, for functions of the

type described above. As noted previously, this is a Lebesgue measure zero
set; we obtain the following stronger result, for bn = 1

n :

Theorem 2. Any divergent α is a Liouville number. Hence the set of di-
vergent α has Hausdorff dimension zero.

This theorem was previously known. In [KP81], Kakutani and Petersen
note that convergence holds for non-Liouville α when f is the (mean-zero)
indicator function of an interval. They remark that this result follows from
number-theoretic results on the discrepancy for a non-Liouville number. As
they do not detail the proof and as we have been unable to find it elsewhere in
the literature, we include it in Appendix A. This proof does give convergence
for all x.

Our proof of Theorem 2 is longer, but it does have the advantage that
the proof provides a way to glean some information about the sum behavior
of the Liouville numbers. For instance, we can prove the following theorem
in Section 5, which does not seem to follow from the type of arguments
outlined in Appendix A:

Theorem 3. There are convergent Liouville numbers.

We show specifically how to produce such numbers using the mechanisms
developed in our proof of Theorem 2.

1.1. Acknowledgements. We would like to thank Adam Fieldsteel and
Randy Linder for bringing this problem to our attention. We would also like
to thank Jon Chaika, Felipe Ramı́rez, David Ralston, Vitali Bergelson, and
Joseph Rosenblatt for helpful conversations and comments.

2. Setup

We fix the following notation throughout the paper:

• α ∈ (0, 1) is an irrational number.
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• We write α = [a1a2a3 . . .] for the continued fraction expansion of α.
• S[a1 . . . an] is the set of all irrational α with a continued fraction
expansion beginning with [a1 . . . an].

• pn
qn

= [a1 . . . an] is the n
th convergent to α. The qn can be determined

from the an via the recurrence relation

qn = anqn−1 + qn−2, q1 := a1, q0 := 1.

• T = Rα.
• 〈〈x〉〉 denotes the distance from x to 0 in S1.
• U = ∪B

l=1Il is a finite union of intervals in S1.
• For a fixed x ∈ S1 and for integers j1 ≤ j2, let

Oα[j1, j2] =
{

Ri
α(x) : j1 ≤ i ≤ j2

}

.

We call Oα[j1, j2] an orbit segment with length j2 − j1 + 1.
• If Oα[j1, j2] is an orbit segment, let

s(Oα[j1, j2]) =

j2
∑

i=j1

f ◦ T i(x).

The following basic facts relate the continued fraction expansion of α to
the dynamics of T :

• For n odd, T qn(0) = qnα is closer to 1 than to 0, and for n even,
T qn(0) is closer to 0 than to 1. In other words, the nth convergent
to α is an overestimate for n odd and an underestimate for n even
(see, e.g. [Khi97, Thm 8]).

• For irrational α, 〈〈T qn0〉〉 < 〈〈Tm0〉〉 for any m < qn+1. In other
words, the convergents are precisely the best approximations of the
second kind to α, i.e. 0 < m ≤ qn and l

m 6= pn
qn

imply |mα − l| >

|qnα− pn| (see, e.g. [Khi97, Thms 16 & 17]).

3. Divergent α exist

3.1. The basic idea. The proof of Theorem 1 is driven by a simple idea.
The convergent pn

qn
is the best rational approximation of the second kind for

α with denominator less than qn+1 = an+1qn + qn−1. If an+1 is quite large,
then this approximation must be quite good (i.e. 〈〈qnα〉〉 is quite small) and
the orbits of x under T and Rpn/qn track closely for a long time. The orbit of
x under Rpn/qn is periodic, hitting qn points. Suppose that qn is odd. Then
for parity reasons, values of f over the orbit of x under the rational rotation
include at least one more +1 than −1, or at least one more −1 than +1,
over each qn steps. This constant rate of accumulation of extra +1’s or −1’s
causes the sum for the rational rotation to diverge. With an+1 quite large,
orbit of the irrational rotation tracks that of the rational rotation closely for
a long time, and we will show that it must also accumulate extra +1’s or
−1’s at a constant rate for a long stretch of orbit. This will drive divergence
of the sum.
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3.2. Lemmas. The proof of our first lemma is clear.

Lemma 3.1. If Oα[j1, j2] is an orbit segment of odd length, then s(Oα[j1, j2]) 6=
0.

Consider the orbit segment Oα[1, qn+1]. We decompose it into segments
σ0 = Oα[1, qn−1] and σl = Oα[qn−1 + (l − 1)qn + 1, qn−1 + lqn] for l =
1, 2, . . . , an+1. Note that the parity of the orbit segment σl depends on α
only through the value of qn, i.e. only through the values of the first n terms
in the continued fraction expansion of α.

Lemma 3.2. Let C = {l ∈ [1, an+1 − 1] : s(σl) 6= s(σl+1)}. i.e. C is the
set of l at which s(σl) changes. Then |C| ≤ 2B, where B is the number of
intervals forming U .

Proof. First, σl+1 = Rqnασl = R±〈〈qnα〉〉σl with sign depending on whether
pn
qn

over- or underestimates α. As σ1 is an orbit segment of length qn, the

minimum distance between its points is 〈〈qn−1α〉〉 > an+1〈〈qnα〉〉. Thus, if
z is an endpoint of some interval in U = ∪B

l=1Il, over the an+1 rotations of
σ1 by R±〈〈qnα〉〉, each of which moves points by 〈〈qnα〉〉, at most one orbit
point can cross z. Moreover, s(σl) 6= s(σl+1) only if an orbit point crosses
the endpoint of an interval under the rotation R±〈〈qnα〉〉 of σl. As there are
2B endpoints, and each is crossed at most once, |C| ≤ 2B. �

We also need the following technical lemma and its corollary.

Lemma 3.3. Suppose that cm is a sequence of ±1’s. Let sn =
∑n

m=1 cm
and suppose that sn

n → L 6= 0. Then for any κ > 0,
∑

cm
1

m+κ diverges.

Proof. By the summation by parts formula,

N
∑

m=1

cm
1

m+ κ
=

sN
N + κ+ 1

−
N
∑

m=1

sm(
1

m+ κ+ 1
−

1

m+ κ
)

=
sN

N + κ+ 1
+

N
∑

m=1

sm
m+ κ

1

m+ κ+ 1
.(2)

PickN1 so large that for allm > N1,
sm
m+κ ≥ L

3 if L > 0, or sm
m+κ ≤ L

3 if L < 0.

Then for all m > N1,
sm
m+κ

1
m+κ+1 is at least L

3
1

m+κ+1 if L > 0, and at most
L
3

1
m+κ+1 if L < 0. In either case, the comparison sums diverge, so by making

N sufficiently large, the term
∑N

m=1
sm

m+κ
1

m+κ+1 can be made arbitrarily

large in absolute value. Since the term sN
N+κ+1 approaches L, the expression

in (2) grows arbitrarily large in absolute value, showing divergence. �

The following is an immediate corollary of the above proof.

Corollary 3.4. Fix L ∈ R and κ,N1 ∈ N. Suppose that cm is a sequence
of ±1’s such that the partial sums sn =

∑n
m=1 cm satisfy sn

n+κ ≥ L
3 for all
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n > N1 if L > 0, or satisfy sn
n+κ ≤ L

3 for all n > N1 if L < 0. Then for

any A > 0 there is an N∗ such that |
∑N∗

m=1 cm
1

m+κ | > A, where N∗ depends
only on L, κ, N1, and A.

The crucial fact here is that N∗ can be determined by the values of L, κ,
N1, and A, without dependence on the specific terms of the sequence cm.
This will play a key role in the proof of Theorem 1.

Proof. We continue using the summation by parts formula in equation (2).
If n > N1, then the terms n

n+κ+1 and
∑n

m=N1+1
sm

m+κ
1

m+κ+1 have the same
sign as L, by our hypothesis on the sequence. On the other hand, the middle
terms

∑N1
m=1

sm
m+κ

1
m+κ+1 might have a different sign. Since |sm| ≤ m for any

sequence cm, we can bound this potential cancellation without dependence
on the sequence. By our hypothesis on the sequence cm, we can choose n >
N1 such that the magnitude of

∑n
m=N1+1

sm
m+κ

1
m+κ+1 becomes arbitrarily

large, without further assumptions on the sequence.

To be more concrete in our choices, let E =
∑N1

m=1
m

m+κ
1

m+κ+1 . Since

|sm| ≤ m, we have the bound |
∑N1

m=1
sm

m+κ
1

m+κ+1 | ≤ E. Choose N2 ∈ N

such that
∑N2

m=1
1

m+κ+1 > (A + E)|3/L|. Take N∗ ≥ max {N1, N2}. Since

N∗ ≥ N1, the term N∗

N∗+κ+1 has the same sign and is larger in magnitude

than L/3. Since N∗ ≥ N2, we have
∣

∣

∣

∣

∣

N∗

∑

m=1

sm
m+ κ

1

m+ κ+ 1

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

N∗

∑

m=1

L

3

1

m+ κ+ 1

∣

∣

∣

∣

∣

≥ A+ E.

Additionally, these two terms on the right side of equation (2) have the same

sign. Hence, |
∑N∗

m=1 cm
1

m+κ | > |L/3| +A > A. �

3.3. Proof of Theorem 1. Suppose qn is odd. By Lemma 3.2, if an+1 is
much larger than 2B, then there will be a long stretch of indices l during
which s(σl) does not change. Over this stretch, the sum accumulates extra
+1’s or −1’s at a rate of at least 1/qn. This, via Corollary 3.4 will drive the
divergence of the sum.

We will find α satisfying the requirements of Theorem 1 by inductively
defining its continued fraction expansion. This requires some care in the sort
of arguments we can make. Recall that S[a1 . . . an] is the set of all irrational
α with a continued fraction expansion beginning with [a1 . . . an]. To define
an+1 in our inductive scheme, we must make arguments which rely only on
fixed data (such as the value of B) and on statements which are true for all
α ∈ S[a1 . . . an]. For example, since α is not yet known, we do not know the
exact sign pattern (f ◦ T nx)n. We must instead rely on information about
it gleaned only from the first n terms of the continued fraction expansion,
such as Lemma 3.1 (applied to σl) and Lemma 3.2.
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Proof of Theorem 1. We define α by producing its continued fraction ex-
pansion inductively. We prove divergence via the Cauchy criterion, showing
that for any qn, there are n2 > n1 > qn such that |

∑n2
n=n1

f ◦ T n(x) 1n | > 1.
Let a1 = 1. Then q1 = 1. By choosing all an even for n ≥ 2, we can

ensure that all qn are odd, simplifying the proof below. Since the argument
below proceeds by choosing an+1 sufficiently large, this causes no problems.

For some n ≥ 1, suppose that we have chosen a1, . . . , an with a1 = 1, an
even for n ≥ 2. Then qn is odd. Moreover, note that all α ∈ S[a1 . . . an]
have the same qn and qn−1.

Let κ = qn−1. For any α ∈ S[a1 . . . an], let c′m(α) = f ◦ T κ+m(x).
The sequence c′m(α) depends, of course, on the value of α, but for all
α ∈ S[a1 . . . an], it accumulates at least one extra +1 or −1 over every
orbit segment σl, by Lemma 3.1. Now let

cm(α) =

{

c′m(α) if m ∈ σl with s(σl) > 0
−c′m(α) if m ∈ σl with s(σl) < 0.

That is, we switch the signs of c′m(α) on an orbit segment σl precisely when
necessary to ensure the sum of cm(α) over the segment is positive. Now, for
all α ∈ S[a1 . . . an], cm(α) accrues at least one extra +1 over each segment
σl.

Take L = 1/qn and N1 = q2n. As noted, κ = qn−1. Let sm =
∑m

i=1 cm.
First, we check that the hypotheses of Corollary 3.4 hold at multiples of
qn greater than N1. Then, we check that the hypotheses of Corollary 3.4
hold between multiples of qn. First, at each m = lqn,

sm
m+κ ≥ l

lqn+qn−1
. If

m > N1 = q2n,
sm

m+κ > L
3 since q2n > qn−1 + 1.

Now suppose that lqn < m < (l + 1)qn with l ≥ qn. Then sm > l − ⌊ qn2 ⌋
since the sum has accumulated at least l extra +1’s and there are at most
⌊ qn2 ⌋ of the opposite signs between lqn and (l + 1)qn which can cancel them
out. From this we compute:

sm
m+ κ

>
l

m+ qn−1
−

⌊qn/2⌋

m+ qn−1

≥
qn

m+ qn−1
−

⌊qn/2⌋

m+ qn−1

≥
qn

2(m+ qn−1)

≥
qn

2(qn(qn + 1) + qn−1)

≥
1

3qn

=
L

3
.
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Therefore this choice of κ, L, and N1 ensures that Corollary 3.4 holds for
the sequence cm defined by any α ∈ S[a1 . . . an]. Let A = 2B + 1, where B
is the number of intervals in U . For this A > 0, Corollary 3.4 provides N∗.
Choose an even an+1 so that an+1qn > N∗.

For α ∈ S[a1 . . . anan+1], we now return to c′m(α), the un-adjusted sign
pattern of the sum

∑

f ◦ Tm(x) 1
m . By Lemma 3.2, there are at most 2B

values of l at which s(σl) 6= s(σl+1). Let l∗1 < l∗2 < · · · < l∗b be the values of
l where s(σl) changes. Let

τ0 = [1, qn−1 + l∗1qn],

τi = [qn−1 + l∗i qn + 1, qn−1 + li+1qn] for 1 ≤ i < b, and

τb = [qn−1 + l∗bqn + 1, qn+1].

If for all 0 ≤ i ≤ b, |
∑

m∈τi
f ◦ Tm(x) 1

m | < 1, then we arrive at a contradic-

tion to the fact, established above, that
∑qn+1

m=qn−1+1 cm
1
m > A = 2B+1. So

there must be at least one τi such that |
∑

m∈τi
f ◦Tm(x) 1

m | ≥ 1. Taking n1

and n2 as the first and last integers in τi, we note that n2 > n1 > qn−1.
Since S[a1 . . . an] is a nested sequence of closed subsets of the circle, the

intersection is nonempty. Take α ∈ ∩nS[a1 . . . an]. Let qn be the denom-
inator of the nth convergent to α. The continued fraction expansion of α
implies that qn → ∞ as n → ∞. For each n, α ∈ S[a1 · · · an+2], so there
exist n2 > n1 > qn such that |

∑n2
n=n1

f ◦ T n(x) 1n | > 1. Hence, the series
∑

f ◦ T n(x) 1n diverges by the Cauchy criterion. �

As mentioned in the introduction, our argument actually proves a stronger
result:

Corollary 3.5. Let FB be the set of all f = 2χU − 1 where m(U) = 1/2
and U can be written as a finite union of no more than B intervals. Let bn
be any sequence such that

∑

n(bn+1 − bn) diverges. Then there is a dense,
uncountable set of irrational α such that

∑

f ◦ T n(x)bn diverges for any
f ∈ FB and any x.

Proof. First, our proof depends on f only through the number of intervals
used to write U , so we get the result for all f ∈ FB .

Second, the condition
∑

n(bn+1 − bn) divergent is sufficient to run the
argument of Lemma 3.3, which drives divergence throughout the rest of the
proof.

Finally, in the proof of Theorem 1, one is free to chose the initial terms of
the continued fraction expansion of α, taking up the argument given there
only after this initial segment. Note that in doing so, we must take up the
argument at some n∗ where qn∗ is odd, after which taking all an even will
ensure all subsequent qn are odd. It is easy to show from the recurrence
relation for the qn and the fact that q0 = 1 that there are infinitely many n
such that qn is odd, so there is no problem finding such an n∗. This allows
us to find a dense set of irrational α which are divergent.
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Our only requirement for divergence is that an are sufficiently large and
even. Since there are always infinitely many choices for each an, we can
construct uncountably many divergent irrational α. �

4. Liouville numbers and convergence

4.1. Theorem 2.

Definition 4.1. An irrational real number α is Liouville if for all v ≥ 1,
there exists a rational number p

q such that

∣

∣α−
p

q

∣

∣ < q−(v+1).

Note that the Liouville condition is equivalent to ‖qα‖ < q−v where ‖x‖
denotes the distance from the nearest integer. Let

Kv = {α : ‖qα‖ < q−v infinitely often}.

By Dirichlet’s theorem, K1 = R and by a result of Khintchine, for v > 1, Kv

is a null set (see, e.g. [Cas57]). By a result of Jarńık [Jar29] and Besicovitch
[Bes34], for v > 1, the Hausdorff dimension of Kv is 2

v+1 . This implies that
the Hausdorff dimension of the set of Liouville numbers is zero.

Liouville numbers are very well approximated by rational numbers whose
denominators are not too large. Similarly, the proof of Theorem 1 relies on
constructing α which are very closely approximated by their convergents.
So it is not too surprising that there is a connection between the two, and
this is the content of Theorem 2.

As before, we assume that f = 2χU − 1 where U is a finite union of B
intervals on S1 with m(U) = 1

2 . We use the sequence bn = 1
n .

Theorem 2. If α is divergent for 0, a function f = 2χU − 1, and bn = 1
n ,

then α is Liouville.

Idea of proof: We prove the contrapositive. We assume that α is not Liouville
and decompose the

∑

f ◦ T n(0) 1n into an infinite collection of (essentially)
alternating subseries. Each such series is summable, and we can bound all
its partial sums uniformly with ease. We then show that the sum of these
bounds is finite, and that this implies that the original series is summable.

4.2. A decomposition scheme. First, we want a scheme for decompos-
ing the sequence (f ◦ T n(0) 1n ) into alternating sequences. Throughout the
following, we write [a, b] for {a, a+1, . . . , b} and will refer to such subsets of
the integers as intervals. In the decomposition, we use nested intervals with
lengths related to the denominators of the continued fraction expansion, qi.

We write (cn) = (f ◦ T n(0)) and (γn) = (f ◦ T n(0) 1n ). We will use roman
letters (dn, bn) to denote subsequences of (cn) and greek letters (δn, βn) to
denote the corresponding subsequences of (γn).

We recall the Denjoy-Koksma Lemma:
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Lemma 4.2. [Her79, VI Thm 3.1] Let f be any mean zero function on S1.
Let [a, b] be any interval of length qk. Then for any x ∈ S1,

∣

∣

∣

∑

j∈[a,b]

f ◦ T j(x)
∣

∣

∣
< V ar(f).

Corollary 4.3. Let f = 2χU − 1, where U is the union of B intervals and
m(U) = 1

2 . Then, for any interval [a, b] of length qk and any x ∈ S1,

∣

∣

∣

∑

j∈[a,b]

f ◦ T j(x)
∣

∣

∣
< 4B.

Definition 4.4. Sequence (xn) is a pair-permutation of (yn) if for all k ∈ N,
{x2k−1, x2k} and {y2k−1, y2k} are equal as sets.

In other words, (yn) is obtained from (xn) by permuting some pairs of
adjacent terms.

Definition 4.5. We call a sequence near-alternating if it is a pair-permutation
of an alternating sequence.

Let Qi =
∏i

j=1 qj. Then Q1 = q1 and Qi+1 = Qiqi+1 for all i ≥ 1.
To avoid the use of floor functions and to remove indices as efficiently as
possible, we recursively define a sequence of 0’s and 1’s. First, ξ1 is 0 if
q1−4B is even and 1 if odd. For i > 1, ξi is 0 if (4BQi−2+ ξi−1)qi−4BQi−1

is even and 1 if odd. Then
⌊

(4BQi−2 + ξi−1)qi − 4BQi−1

2

⌋

=
(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi

2
.

Without loss of generality, assume that q1 > 4B. If this is not the case,
the proof can be modified by shifting all of the indices.

Proposition 4.6. There is a decomposition (cn) = ⊔∞
i=1(d

(i)
n ) such that

(d
(1)
n ) is union of (q1 − 4B− ξ1)/2 subsequences, (d

(2)
n ) is a union of ((4B +

ξ1)q2 − 4Bq1 − ξ2)/2 subsequences, and (d
(i)
n ) is the union of ((4BQi−2 +

ξi−1)qi−4BQi−1− ξi)/2 subsequences for i > 2. Each of these subsequences

of some (d
(i)
n ) is near-alternating.

Proof. Throughout this proof, we will take “a length Qi interval” to mean
an interval of the form [(j − 1)Qi + 1, jQi] for some integer j ≥ 1.

Let (c
(0)
n ) = (cn) = (f ◦ T n(0)). By Corollary 4.3, each length Q1 = q1

interval contains at least (q1−4B− ξ1)/2 indices such that cn = +1 and the
same number of indices such that cn = −1. For l = 1, . . . , (q1 − 4B − ξ1)/2,

let b
(1,l)
2j−1 be the lth term of (cn) that is equal to +1 with index in the jth

length Q1 interval. Similarly, let b
(1,l)
2j be the lth term of (cn) that is equal

to −1 with index in the jth length Q1 interval. Let (d
(1)
n ) be the union of

these (q1 − 4B − ξ1)/2 near-alternating sequences. Let X1 be the indices of
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the terms of (cn) that are not in (d
(1)
n ). Then the intersection of each length

Q1 interval with X1 has size 4B + ξ1.
Since each length Q2 interval contains q2 length Q1 intervals, the intersec-

tion of Q2 with X1 has size (4B + ξ1)q2. Additionally, Corollary 4.3 implies
that the sum over each length q2 interval is at most 4B. Since there are q1
intervals of length q2 in each length Q2 interval, the sum over each length Q2

interval is at most 4Bq1. Since (d
(1)
n ) removes the same number of +1’s and

−1’s from each length Q2 = q1q2 interval, the sum over the remaining terms
of each Q2 interval (the terms also in X1) is also at most 4Bq1. Thus, each
length Q2 interval contains at least ((4B + ξ1)q2 − 4Bq1 − ξ2)/2 remaining

indices (in X1) such that cn = +1, and similarly for −1. As above, let b
(2,l)
2j−1

be the lth remaining +1 and b
(2,l)
2j be the lth remaining −1, where the indices

as terms of (cn) are in the jth length Q2 interval and in X1. Let (d
(2)
n ) be

the union of these near-alternating sequences. Let X2 be the indices of the

terms of (cn) that are not in (d
(1)
n ) or in (d

(2)
n ). Then the intersection of each

length Q2 interval with X2 has size 4Bq1 + ξ2.
For the induction hypothesis, let i ≥ 2 be an integer. Suppose that we

have chosen disjoint sequences (d
(j)
n ) for all 1 ≤ j ≤ i. Let Xi be the set of

indices of the terms of (cn) that are not in any of the (d
(j)
n ) so far. Suppose

that the intersection of each length Qi interval with Xi has size 4BQi−1+ξi.
Since each length Qi+1 interval contains qi+1 length Qi intervals, the in-

tersection of Qi+1 with Xi has size (4BQi−1 + ξi)qi+1. Additionally, Corol-
lary 4.3 implies that the sum over each length qi+1 interval is at most 4B.
Since there are Qi intervals of length qi+1 in each length Qi+1 interval, the

sum over each length Qi+1 interval is at most 4BQi. Since each (d
(j)
n ) for

1 ≤ j ≤ i removes the same number of +1’s and −1’s from each length
Qi+1 interval, the sum over the remaining terms of each Qi+1 interval (the
terms also in Xi) is also at most 4BQi. Thus, each length Qi+1 interval
contains at least ((4BQi−1 + ξi)qi+1 − 4BQi − ξi+1)/2 remaining indices (in

Xi) such that cn = +1, and similarly for −1. As above, let b
(i+1,l)
2j−1 be the

lth remaining +1 and b
(i+1,l)
2j be the lth remaining −1, where the indices as

terms of (cn) are in the jth length Qi+1 interval and in Xi. Let (d
(i+1)
n ) be

the union of these near-alternating sequences. Let Xi+1 be the indices of the

terms of (cn) that are not in (d
(j)
n ) for 1 ≤ j ≤ i+ 1. Then the intersection

of each length Qi+1 interval with Xi+1 has size 4BQi + ξi+1. Hence, the
proof follows by induction.

�
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Let (b
(i,l)
n ) be the near-alternating subsequences of (d

(i)
n ) obtained in Propo-

sition 4.6; n indexes within each individual sequence, and l indexes the se-

quences themselves. Let l index them so that b
(i,l)
1 always comes before

b
(i,l+1)
1 as elements of (cn).

Definition 4.7. Let ind(b
(i,l)
1 ) denote the index of b

(i,l)
1 as an element of

(cn).

We have the following control on the first elements of the near-alternating
sequences.

Proposition 4.8. For all l, and for i > 5,

ind(b
(i,l)
1 ) ≥

⌊ l

4BQi−4 + ξi−3

⌋

Qi−3

and

ind(b
(i,l)
1 ) ≥

(4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2
.

Remark 4.9. The first bound is stronger for large l; the second bound’s
purpose is to give a nontrivial lower bound when l < 4BQi−4 + ξi−3.

Proof. For the first bound, we have the following argument. Examining

the proof of Proposition 4.6, we see that the terms of (b
(i,l)
n ) have indices

in Xi−3, i.e. among those indices which have not been used for (d
(j)
n ) for

1 ≤ j ≤ i − 3. As noted in that proof, the intersection of Xi−3 with each
length Qi−3 interval has size 4BQi−4+ξi−3. Therefore, the l

th index in Xi−3

is at least ⌊ l
4BQi−4+ξi−3

⌋Qi−3.

For the second bound, we note that in Proposition 4.6 the first

(4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2

+1’s and −1’s have been removed from cn at the i− 1st step of the process,

leaving behind Xi−1. The terms of (b
(i,l)
n ) are drawn from Xi−1, hence the

index of any remaining term has this lower bound. �

Now that we have carefully extracted our near-alternating sequences from
(cn) and carefully bounded the number of such sequences and the index of
the first terms, we prove two lemmas on the growth rate of these quantities.
These will simplify our convergence estimates in the next subsection.

Lemma 4.10. Fix α. There exists a constant E (uniform in i > 2) such
that

(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi
2

≤ CQi−2qi.

Proof. It is easy to check that

(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi
2

1

Qi−2qi
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is uniformly bounded in i since Qi−2qi grows at least as fast as the first
term. �

Lemma 4.11. Fix α. There exists a constant F (uniform in i > 5) such
that

ind(b
(i,l)
1 ) ≥ Fqi−3l

for all l.

Proof. For 1 ≤ l ≤ 4BQi−4 + ξi−3, using Proposition 4.8,

ind(b
(i,l)
1 ) ≥

(4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2

≥
4BQi−3qi−1 − 4BQi−2 − ξi−1

2
≥ BQi−3qi−1 −BQi−2

= BQi−3(qi−1 − qi−2)

≥ BQi−3

≥ Bqi−3(4BQi−4 + ξi−3)/(8B)

≥
B

8
qi−3l

as desired.
For l ≥ 4BQi−4 + ξi−3, again by Proposition 4.8

ind(b
(i,l)
1 ) ≥

⌊ l

4BQi−4 + ξi−3

⌋

Qi−3

≥
l

16BQi−4
Qi−3

=
1

16B
lqi−3.

Taking F = 1
16B finishes the proof. �

4.3. The convergence argument. We need the following pair of straight-
forward lemmas on sums involving near-alternating series and decomposi-
tions of series:

Lemma 4.12. Let (βn) be a decreasing sequence, with |βn| → 0, and such
that exactly one of {β2n−1, β2n} is positive for each integer n. Then

∑

n βn
converges and

∣

∣

∣

∞
∑

n=1

βn

∣

∣

∣
≤ |β1|.

Furthermore, for any interval [a, b],

∣

∣

∣

∑

n∈[a,b]

βn

∣

∣

∣
≤ 2|β1|.
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Proof. It is easy to verify that the sign pattern giving the largest value of
the full sum is (−1)n+1 and the pattern giving the smallest value is (−1)n.
The first statement is then a standard fact about alternating series.

The second statement follows from the first, after noting that it is possible
that the a and a+ 1st terms of βn may have the same sign. �

Remark 4.13. The proof actually gives

∣

∣

∣

∑

n∈[a,b]

βn

∣

∣

∣
≤ 2|βa|

but we don’t need this below.

Lemma 4.14. Suppose that we have a decomposition of a sequence (γn) =

⊔i(δ
(i)
n ) satisfying:

• For all i,
∑

n δ
(i)
n converges.

• For all i and all [a, b], there exist D(i) such that |
∑

n∈[a,b] δ
(i)
n | ≤ D(i),

and
∑

iD
(i) < ∞.

Then
∑

n γn converges.

Proof. We prove convergence by the Cauchy Criterion. Let ǫ > 0 be given.
For each i ∈ N, let Xi be the set of indices of the terms from (γn) that

are in (δ
(i)
n ). Let I ∈ N be such that

∑

i>I D
(i) < ǫ/2. For each i ≤ I,

let Ni ∈ N be such that for any m1,m2 ≥ Ni the terms of (δ
(i)
n ) such that

φ(i)(n) ∈ [m1,m2] satisfy

∣

∣

∣

∑

n:φ(i)(n)∈[m1,m2]

δ(i)n

∣

∣

∣
=

∣

∣

∣

∑

[m1,m2]∩Xi

δn

∣

∣

∣
<

ǫ

2i+1
.

Let N = max{Ni}. Then, for any m1,m2 ≥ N ,

∣

∣

∣

∑

n∈[m1,m2]

γn

∣

∣

∣
=

∣

∣

∣

I
∑

i=1

∑

[m1,m2]∩Xi

δn +
∑

i>I

∑

[m1,m2]∩Xi

δn

∣

∣

∣

≤

I
∑

i=1

∣

∣

∣

∑

[m1,m2]∩Xi

δn

∣

∣

∣
+

∑

i>I

∣

∣

∣

∑

[m1,m2]∩Xi

δn

∣

∣

∣

≤
ǫ

2
+

∑

i>I

D(i)

≤ ǫ.

�

We recall a few facts relating the Liouville property to the continued
fraction expansion.
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Let NL be the set of irrational non-Liouville numbers, and denote by
NLv = {α : ‖qα‖ < q−v has no solutions}. Then ∪v≥1NLv = NL. Let us
assume α ∈ NLv. Then we have that for all q,

‖qα‖ ≥ q−v.

It is a standard result in the theory of continued fractions (see, e.g. [Khi97,
Thm 9]) that

‖qkα‖ <
1

qk+1
for all k.

We thus have

1

qvk
≤ ‖qkα‖ <

1

qk+1

and

qk+1

qvk
< 1, or qk+1 < qvk for all k.

From the recurrence relation for qk and a comparison with the Fibonnacci
sequence, we also have that there is some ϕ > 1, C > 0 such that

qk ≥ Cϕk.

We are now ready to complete our proof of Theorem 2.

Proof of Theorem 2. We use the decomposition from Proposition 4.6 to

decompose the sequence (γn) = (f ◦T n(0)/n) into subsequences (δ
(i)
n ). Using

the decomposition (cn) = ⊔i(d
(i)
n ) and the associated index function, let

δ
(i)
n = γ

ind(d
(i)
n )

and β
(i,l)
n = γ

ind(b
(i,l)
n )

. Then the decompositions (γn) =

⊔i(δ
(i)
n ) and (δ

(i)
n ) = ⊔l(β

(i,l)
n ) also satisfy Propositions 4.6 and 4.8.

To prove convergence using the mechanism of Lemma 4.14, we need only
obtain estimates for i sufficiently large, so we restrict our attention to i > 5.

Then, using Lemma 4.10 the sequence (δ
(i)
n ) consists of at most CQi−2qi

near-alternating sequences (β
(i,l)
n ). As before, they are indexed so that

β
(i,l)
1 always comes before β

(i,l+1)
1 as elements of (γn). The individual se-

ries
∑

n β
(i,l)
n converge by Lemma 4.12, with

|
∑

n∈[a,b]

β(i,l)
n | ≤ 2|β

(i,l)
1 |.

Using Lemma 4.11

|β
(i,l)
1 | ≤

1

Fqi−3l
.

Applying these bounds and Lemma 4.12, we get a bound on partial sums

of δ
(i)
n as follows: for any interval [a, b],
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|
∑

n∈[a,b]

δ(i)n | ≤ 2

EQi−2qi
∑

l=1

|β
(i,l)
1 |

≤ 2

EQi−2qi
∑

l=1

1

Fqi−3l
.

This can be bounded above by

2

Fqi−3
(1 + log(EQi−2qi)) ≤

2

Fqi−3
(1 + log(Eqi−1

i ))

=
2

Fqi−3
(1 + logE + (i− 1) log qi)

≤
2

Fqi−3
(1 + logE + (i− 1) log qv

3

i−3),

using that qi < qv
3

i−3 by the Liouville condition.

By the exponential growth of qk,
∑

k
1
qk

< ∞. We claim that
∑

k
k log qk

qk

converges, which will ensure that
∑

i D
(i) converges and permit application

of Lemma 4.14. Note that for x > e, log x
x is decreasing and recall that

qk ≥ Cϕk. Since q3 is surely greater than e, for k ≥ 3, k log qk
qk

≤ k logCϕk

Cϕk and

∞
∑

k=1

k log qk
qk

≤
log q1
q1

+
2 log q2

q2
+

∞
∑

k=3

k logCϕk

Cϕk

=
log q1
q1

+
2 log q2

q2
+

∞
∑

k=3

k logC

Cϕk
+

k2 logϕ

ϕk
.

As ϕ > 1, this converges.

We then have that
∑∞

i=1

∣

∣

∣
D(i)

∣

∣

∣
converges. By Lemma 4.14, this implies

that
∣

∣

∣

∑∞
n=1 γn

∣

∣

∣
converges, establishing the theorem.

�

As a corollary, we obtain the following result on the size of the set of
divergent α.

Corollary 4.15. The set of all divergent α has Hausdorff dimension 0.

5. Convergent Liouville numbers

We are left with the question of whether all Liouville α are divergent. The
proof we noted in the introduction about convergence for non-Liouville α
does not touch this question. We remark that the argument for divergence
in Section 3 uses the odd parity of the qn’s for the α we constructed. This
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certainly does not hold for all Liouville α. We do not know if some sort
of requirement on parity of the qn’s is necessary to ensure divergence, but
we will show here that, independent of this concern, there are convergent
Liouville numbers. Specifically we will construct Liouville numbers for which
the arguments of the previous section can still be used to prove convergence.

Theorem 3. There exist Liouville numbers α which are convergent for any
f = 2χU − 1, where U is a union of finitely many intervals with m(U) = 1

2 ,

and any x ∈ S1. The set of such α is dense.

Proof. The convergence argument of the previous section is our main tool.
It is standard that

(3) ‖qkα‖ <
1

qk+1
.

Now suppose that we define α by choosing ak+1 = qk−1
k . Note that as qk

is defined only in terms of a1, . . . , ak, this defines α inductively. We can take
up this inductive definition after any initial sequence [a1a2 . . . an], producing
a dense set of α. Then,

qk+1 = ak+1qk + qk−1 ≥ qkk .

With (3), this implies that for all k,

‖qkα‖ <
1

qkk
.

Thus, for any v ≥ 1, all pk
qk

with k ≥ v satisfy the approximation condition

in the definition of a Liouville number, so α is Liouville.
On the other hand,

(4) qk+1 ≤ 2qkk

at least for k > 1.
Examining the proof of Theorem 4.1, we see that the key necessity for

convergence of the series is summability of k log qk
qk−1

. By equation (4),

k log qk
qk−1

≤
k log 2qk−1

k−1

qk−1
=

k log 2 + k(k − 1) log qk−1

qk−1
.

Clearly
∑

k
k log 2
qk−1

converges. For the second summand, again using qk ≥

Cϕk,
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∞
∑

k=1

k(k − 1) log qk−1

qk−1
≤

2 log q1
q1

+
6 log q2

q2
+

∞
∑

k=3

k(k − 1) logCϕk

Cϕk

=
2 log q1

q1
+

6 log q2
q2

+
∞
∑

k=3

k(k − 1) logC

Cϕk
+

k2(k − 1) log ϕ

Cϕk
.

The sum converges, so by the argument of the proof for Theorem 4.1, α is
convergent for any f as above and any x.

�

Of course, the proof of Theorem 2 presented here allows many other
constructions of convergent Liouville numbers. Examining the proof above,

we see that a sufficient condition for convergence is having k log qk
qk−3

summable.

This leaves plenty of leeway to choose ak sufficiently large to produce a
Liouville number.

Appendix A. Convergence for non-Liouville numbers

We provide a second proof of Theorem 2, working out Kakutani and
Petersen’s remark from [KP81] that convergence follows from estimates of
the discrepancy for non-Liouville numbers.

Let ω = (x1, x2, . . .) be a sequence of elements in [0, 1]. For our work we
will take ω = (nα + x (mod 1))n. The failure of equidistribution of this
sequence is measured by the discrepancy function:

Definition A.1. The discrepancy of ω is

DN = DN (ω) = sup
0≤α<β≤1

∣

∣

∣

#([α, β) ∩ ω|[1,N ])

N
− (β − α)

∣

∣

∣
.

By the discrepancy of α, or DN (α) we will mean DN ((nα+ x (mod 1))).
It is immediate from Definition A.1 that this function of N is independent
of x.

We recall the following definition and its connection to the Liouville prop-
erty.

Definition A.2. Let η > 0. We say α is of type η if η = sup γ such that

lim inf
q→∞

qγ〈〈qα〉〉 = 0 where q ∈ N.

As before 〈〈−〉〉 denotes distance from the nearest integer.

It is easy to check that α is Liouville if and only if α is of type ∞. By
Dirichlet’s approximation theorem, all numbers are of type at least 1.

The following result on the discrepancy of non-Liouville α is the key tool
we need:

Theorem A.3. (See, e.g. [KN74, Thm 3.2]) Let α be of type η. Then for

all ǫ > 0, DN (α) = O(N−1/η+ǫ).
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We now prove Theorem 2 using this result.

Proof of Theorem 2. Let α be non-Liouville; suppose it is of type 1 ≤
η < ∞. Fix any x ∈ [0, 1). Let Snf =

∑n
i=1 f(nα + x). Using summation

by parts,
N
∑

n=1

f(nα+ x)

n
=

SNf

N
+

N−1
∑

n=1

Snf

n(n+ 1)
.

Using Theorem A.3 and picking ǫ > 0 so small that −1/η + ǫ < 0, one can

easily show that |Snf | = O(n1−1/η+ǫ) = O(n1−t) for some t > 0. From

this we immediately have that SNf
N → 0 as N → ∞ and that

∑∞
n=1

Snf
n(n+1)

converges, completing the proof. �

References

[AL07] Idris Assani and Michael Lin. On the one-sided ergodic Hilbert transform. In
Ergodic theory and related fields, volume 430 of Contemp. Math., pages 21–39.
Amer. Math. Soc., Providence, RI, 2007.

[Bes34] A.S. Besicovitch. Sets of fractional dimensions (IV): on rational approximation
to real numbers. J. Lond. Math. Soc., 9:126–131, 1934.

[BW09] István Berkes and Michel Weber. On the convergence of
∑

ckf(nkx), volume
201 of Memoirs of the AMS. American Mathematical Society, 2009.

[Cas57] J.W.S. Cassels. An introduction to Diophantine approximation. Number 45 in
Cambridge tracts in mathematics and mathematical physics. Cambridge Uni-
versity Press, 1957.

[CCL10] Guy Cohen, Christophe Cuny, and Michael Lin. The one-sided ergodic Hilbert
transform in Banach spaces. Studia Math., 196(3):251–263, 2010.

[CL10] Guy Cohen and Michael Lin. The one-sided ergodic Hilbert transform of normal
contractions. In Characteristic functions, scattering functions and transfer func-
tions, volume 197 of Oper. Theory Adv. Appl., pages 77–98. Birkhäuser Verlag,
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[Jar29] V. Jarńık. Diophantichen Approximationen und Hausdorffsches mass. Mat.
Sbornik, 36:371–382, 1929.

[Khi97] A. Ya. Khinchin. Continued Fractions. Dover, 1997.
[KN74] L. Kuipers and H Niederreiter. Uniform distribution of sequences. Wiley & Sons,

1974.



20 DAVID CONSTANTINE AND JOANNA FURNO

[KP81] Shizuo Kakutani and Karl Petersen. The speed of convergence in the ergodic
theorem. Monatscefte für Mathematik, 91:11–18, 1981.
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