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CHAPTER I

Introduction

1.1 An overview of dynamics

In general terms, this dissertation contributes to the intersection of geometry

and dynamics. It presents a result on geometric rigidity. Underlying the work

here is an approach that emphasizes the interplay of dynamical techniques and

the geometry of the spaces on which the dynamics take place. In this introduc-

tory chapter, I will begin by presenting some relevant background material, and

attempt to motivate some of the main ideas behind the approaches taken in this

work. I hope to give some idea of how various combinations of geometric and

dynamical techniques can prove particularly fruitful. Introductory material more

specific to the result here is presented in the final section of this chapter.

Classically, dynamics studies transformations of spaces, often called phase

spaces. These transformations can be a single map from the space to itself, or a

flow on the space. It is natural to think of these transformations as taking place

in time: the iteration of a single transformation marks a discrete time sequence,

a flow takes place in continuous time. Of particular interest in dynamics is long-

term behavior associated to these transformations. How does the movement of

a point under a flow or transformation – its orbit – behave in the long run?

1
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How do average values of a function over segments of an orbit behave as that

segment becomes longer? What measures or other objects are preserved by a

given dynamical system?

Under a modern view, these transformations are examples of group actions and

dynamics studies their behavior, particularly its long-term or asymptotic aspects.

A group action is an assignment to each element of a group a transformation of

the phase space in a way coherent with the algebraic structure of the group.

More precisely, one has the following definition:

Definition 1.1.1 (Group action). A left-action of a group G on a space X is

map G×X → X sending (g, x) 7→ g · x satisfying

1. g · (h · x) = (gh) · x for any g, h ∈ G and any x ∈ X

2. e · x = x for e the identity in G and any x ∈ X.

A right-action may be defined similarly. More concisely, the group action is a

group homomorphism from G to Bij(X), the group of bijections of X.

Of most interest are actions for which only e acts trivially on X, i.e. for which

the kernel of the homomorphism into Bij(X) is trivial; such actions are called

faithful. In this framework, the discrete dynamics of an iterated transformation

is a Z-action and a flow is an R-action. The acting group parametrizes ‘time’;

the extension to general acting groups allows, in some sense, a consideration of

dynamical systems that evolve in ‘generalized time.’

Consider two instructive examples:

Example 1.1.2 (Geodesic flow). Let M be a smooth manifold, and take as

phase space the unit tangent bundle T 1M . Let γv denote the geodesic with
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initial tangent vector v. The geodesic flow gt takes a vector v to the vector

tangent to γv a distance t along γv. To verify that the flow corresponds to an

R-action note that moving a tangent vector along a geodesic for distance t and

then distance s is equivalent to moving it distance t+ s. This dynamical system

reflects the geometry of M very strongly; for example, periodic orbits correspond

to closed geodesics. A dynamical system based on the geodesic flow will be of

fundamental importance in chapter II.

Example 1.1.3. Let H be a group with subgroups Γ and G. G acts on the coset

space H/Γ by left-multiplication: g · hΓ = ghΓ. This example is particularly

interesting when H is a Lie group and Γ is a discrete group. In this case H/Γ is

a manifold. This dynamical system is strongly tied to the geometry of H/Γ as

well as the underlying algebra of the groups H and G.

Dynamics only becomes interesting or useful if the group action preserves some

structure on the phase space, for example a topology, a differentiable structure

or a measure. For example, that the geodesic flow preserves the differentiable

structure on the unit tangent bundle is crucial for the study of that system. This

dissertation works with actions that preserve a measure. For example 1.1.2 this

is the Liouville measure, the product measure of the Riemannian volumes on the

manifold M and on the unit tangent spheres at each point; for example 1.1.3 if H

has bi-invariant Haar measure the projection of this measure to H/Γ is invariant

under the G-action.

Ergodic theory is the study of measure-preserving actions; its basic notion is

that of an ergodic measure.

Definition 1.1.4 (Ergodic measure). A G-invariant measure µ on X is called
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ergodic for a G-action if for any G-invariant, measurable set A ⊂ X, µ(A) = 0

or µ(X\A) = 0.

This definition involves both the group action and the measure; one sometimes

also says the action is ergodic for the measure. Ergodicity indicates that, up to

zero measure sets, there is no way to cut up the phase space into smaller pieces

preserved by the dynamics. The following theorem reinforces the utility of this

idea and indicates why ergodic measures are the basic units of study in measure-

preserving dynamics.

Theorem 1.1.5 (Ergodic decomposition). Any Borel probability measure µ on

a space X invariant under a continuous group action can be written as a direct

integral of ergodic measures. That is, there is a partition (modulo null sets) of X

into invariant subsets Xα, with α ∈ A, A a standard Borel space with measure ν,

and an invariant ergodic measure µα on each Xα such that for any µ-measurable

function f , ∫
X

fdµ =

∫
A

∫
Xα

fdµαdν.

This theorem indicates that the basic building blocks of all invariant measures

are the ergodic measures, and hence their study is fundamental to ergodic theory.

The most fundamental tool of ergodic theory is the Birkhoff Ergodic Theorem:

Theorem 1.1.6 (Birkhoff Ergodic Theorem, see [23] Theorem 4.1.2). Let T be

an invertible transformation on X preserving a probability measure µ and let f

be in L1(X,µ). Define the forward and backward time averages

f+(x) := limn→∞
1

n

n−1∑
i=0

f(T i(x))

f−(x) := limn→∞
1

n

n−1∑
i=0

f(T−i(x)).
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Then these exist and agree for µ-almost every x ∈ X. Furthermore, if µ is

ergodic, then

f+(x) = f−(x) =

∫
X

fdµ

for µ-almost every x ∈ X.

The analogous version of this theorem for flows also holds. The intuitive

content of this theorem is that, for ergodic measures, time averages equal the

space average – the average of a function’s value along the orbit of (almost)

every point is equal to the integral of that function over the whole space. This

tells us, in particular, that almost all orbits distribute themselves uniformly

according to the ergodic measure. This connection between orbit behavior and

ergodic measures is crucial for many rigidity results. A simple but useful result

that follows easily from this theorem is the following lemma:

Lemma 1.1.7 (Dense orbits). Almost every point x in the support of an ergodic

measure has a dense orbit in the support of that measure.

A final fact from dynamics that should be introduced here is Poincaré recur-

rence.

Theorem 1.1.8 (Poincaré Recurrence, see [23] Theorem 4.1.19). Let T be a

transformation of X preserving µ and let A be any measurable set. Then for any

N ∈ N

µ({x ∈ A : {T i(x)}i≥N ⊂ X\A}) = 0.

Perhaps the simplest and most basic element of ergodic theory, this theorem

states that orbits under measure-preserving transformations almost always return

near themselves; this proves essential in controlling the behavior of these orbits

and objects related to them. It is used throughout the arguments below.
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1.2 Geometry and dynamics

In this thesis, dynamics is a tool for solving problems in geometry; its interest

and usefulness come from the rich interplay between the dynamics and geometry

of the objects at play. I discuss here a few aspects of their interaction, with

particular attention to those that will play a role in the work presented later.

Geometry and dynamics are intertwined in the underlying phase space X.

The geometric or topological properties of X affect what sort of group actions X

admits, as well as the dynamical properties of these group actions. For example,

any continuous, orientation-preserving transformation of the 2-sphere has a fixed

point, whereas it is easy to find transformations of the 2-torus that do not; the

differing topology of the phase spaces results in very distinct dynamical behavior.

An example of the role of geometry that is closely related to the work in

chapter II is the ergodic theory of the geodesic flow. The following theorem

asserts ergodicity of this flow for a compact manifold of negative curvature. It

is due to Anosov for variable curvature; he builds on the argument of Eberhard

Hopf for surfaces and spaces of constant constant curvature (see Brin’s appendix

to [3] for details).

Theorem 1.2.1. The geodesic flow on a compact manifold of negative curvature

is ergodic.

The idea underlying the proof of this theorem (the Hopf argument) is the

basic argument for ergodicity in smooth dynamical systems. It underlies, for

example, the work of Brin on frame flow on which the results in chapter II rely.

To observe the importance of geometry for the dynamical result of this theo-

rem, consider the case of a flat torus. If one fixes a vertical foliation of this torus
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by closed geodesics, then the angle between any geodesic and the leaves of this

foliation is constant – the geodesic flow is clearly not ergodic. Questions relating

the ergodic theory of the geodesic flow and the geometry of the underlying space

abound. Though the geodesic flow is not ergodic on the flat torus, there are

metrics on the torus with ergodic geodesic flow.

Another interesting line of questions relates to what dynamics can tell one

about geometry. A conjugacy between the geodesic flows on M1 and M2 is an

invertible map φ : T 1M1 → T 1M2 such that for all v ∈ T 1M1 and all t, φ(gtv) =

gtφ(v). One can ask under what conditions the existence of such a conjugacy

implies that the underlying manifolds M1 and M2 are isometric. This is true if

the Mi are nonpositively curved compact surfaces ([25], [14]) or nonpositively

curved locally symmetric spaces ([15]), but is open in many other cases.

Closely related to the dynamics of geodesic flows is the important idea of

geometric rank. This will be the central notion in chapter II. Let M be a

complete Riemannian manifold. For each vector v in T 1M , consider the space Pv

of all parallel vector fields w(t) orthogonal to γv such that the sectional curvature

K(w(t), γ̇v(t)) is equal to zero for all t. We make the following definition:

Definition 1.2.2 (Geometric rank). The minimum of dim(Pv) over all v ∈ T 1M

is the geometric rank of M . If the geometric rank is at least one then we say M

has higher rank.

Note that this definition is different from that usually offered for higher rank.

In the usual definition, the manifold is said to have higher rank if along each

geodesic the space of parallel Jacobi fields has dimension at least two. The two

definitions are equivalent, though one must note that when counting dimensions
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of the relevant spaces, the definition here yields a dimension one smaller than

the standard definition, as the velocity vector for the geodesic is not counted.

The alternative definition is useful for its ability to generalize to other curvature

settings as in the definition of hyperbolic rank below and in chapter II.

As indicated by the distinct behaviors of the geodesic flows for the flat torus

and a hyperbolic surface, having higher rank has strong consequences for the

behavior of the geodesic flow, particularly in non-positive curvature. These are

explored in [4] and [5]. In work building on these results Ballmann [2] and

Burns and Spatzier [12] proved that compact, non-positively curved manifolds

with higher rank are locally symmetric. The result in chapter II is analogous for

a related notion of rank, introduced by Hamenstädt in [20]. This notion is as

follows:

Definition 1.2.3 (Higher hyperbolic rank). Suppose for each geodesic γ in M

there is a parallel vector field wγ such that the sectional curvature K(γ̇, wγ) is

-1 always. Then M is said to have higher hyperbolic rank.

In her work, Hamenstädt proves a result analogous to that of Balmann and

Burns-Spatzier, that a compact manifold with higher hyperbolic rank and sec-

tional curvature is a locally symmetric space. The result in chapter II gives,

under some conditions, a simpler proof of a certain case of her result; under

other conditions the result is new.

A key tool for the work of both Burns-Spatzier and Hamenstädt and an im-

portant object relating geometry and dynamics is the boundary at infinity of a

nonpositively-curved manifold. It is defined as follows.

Definition 1.2.4 (Boundary at infinity). Let M be a manifold with nonpositive
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sectional curvature and let γ(t) and γ′(t) for t ∈ [0,∞) be geodesic rays on the

universal cover M̃ . Declare γ to be equivalent to γ′ if the distance between

γ(t) and γ′(t) is bounded for all t. The boundary at infinity of M̃ is the set of

equivalence classes for this relation and it denoted M̃(∞).

Burns and Spatzier study spherical building structures induced on M̃(∞) by

higher-rank flat subspaces in M̃ . Hamenstädt studies how the directions giving

higher hyperbolic rank are recorded by a conformal structure on the boundary.

In chapter II this space is used to construct certain paths whose segments are

infinite geodesics and measures on the boundary are important in ensuring these

geodesics have good dynamical properties.

A few remarks on homogeneous and symmetric spaces close this section.

Definition 1.2.5 (Homogeneous space). Let a group H act on a space X. One

calls X an H-homogeneous space if the action is transitive.

Of particular note is the case where H is a Lie group and X is a manifold. Fix

some point o in X and let Ho be the set of transformations in H that fix o. Then

it is easy to see that X is identified with the quotient space Ho\H. Structures

from the Lie group H are inherited by the homogeneous space. For example,

the left-invariant metric and the left-Haar measure on H descend to X. If J is

a closed subgroup of H then J\H is a homogeneous space and a manifold. If

in addition Γ is a discrete subgroup of H such that Γ acts freely and properly

discontinuously on J\H by right-multiplication, then J\H/Γ is a manifold which

one says is modeled on the homogeneous space J\H.

One particularly important class of homogeneous spaces is that of symmetric

spaces. For a complete Riemannian manifold, define the local geodesic symmetry
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as follows. Fix a point p ∈M and let U be a neighborhood of p such that there

is a unique shortest geodesic joining p to any point in U ; write any such x ∈ U

as γ(t) for such a geodesic. The local geodesic symmetry at p maps x = γ(t) to

γ(−t).

Definition 1.2.6 (Symmetric Space). M is a locally symmetric space if for each

p ∈ M there is a neighborhood of p on which the geodesic symmetry is an

isometry. M is called a (globally) symmetric space if all local geodesic symmetries

can be extended to global symmetries that are isometries.

There is an algebraic classification of symmetric spaces using Lie groups (see

[22] for details), some points of which are recorded here:

Theorem 1.2.7. Any symmetric space X is isomorphic to K\G for Lie groups

K and G, where K is a compact subgroup. More precisely there is an involution

σ of g for which k is the set of fixed points. Any locally symmetric space is of the

form K\H/Γ.

There is a notion of rank for symmetric spaces coupled to the notion of geo-

metric rank discussed above.

Definition 1.2.8 (Rank of a symmetric space). The rank of a symmetric space

X is the dimension of a maximal flat subspace in X.

This notion is a global version of the local geometric rank. Define the real

rank of a Lie group as the dimension of a maximal, R-split abelian subgroup of L.

Then the rank of a symmetric space is the Lie group rank of the underlying Lie

group L. Higher rank (rank two or greater) again implies many rigidity results

about these spaces and groups.
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1.3 Rank-rigidity and frame flow

Rank-rigidity theorems characterize locally symmetric spaces by the property

of having higher geometric rank of some sort: manifolds with higher rank are

shown, under some curvature conditions, to be locally symmetric spaces. The

first notion of higher geometric rank is that of Definition 1.2.2 above. It is a

local, geometric analogue of rank for symmetric spaces (see Definition 1.2.8).

The more common equivalent definition of higher rank is the following:

Definition 1.3.1 (Euclidean rank). Let M be a Riemannian manifold. The rank

of a geodesic γ (or of a vector v tangent to γ) in M is the dimension of the space

of parallel Jacobi fields along γ. The rank of M is the minimum of this number

over all geodesics. M is said to have higher Euclidean rank if rank(M) ≥ 2.

Euclidean rank is emphasized here in view of an extension to other notions

of rank below; in most of the literature this is simply referred to as rank. Note

that the dimension counted in this definition is always one higher than that in

Definition 1.2.2, as it includes the tangent vector field for the geodesic itself.

The first rank-rigidity theorem was proved for Euclidean rank by Ballmann

[2] and, using different methods, by Burns and Spatzier [12]. They proved that

if an irreducible (the universal cover does not split isometrically as a product),

compact, nonpositively curved manifold has higher Euclidean rank, then it is

locally symmetric. Ballmann’s proof works for finite volume as well and the

most general version of this theorem is due to Eberlein and Heber, who prove it

under only a dynamical condition on the isometry group of M ’s universal cover

[19].

An extension of geometric rank is given by the following definition:
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Definition 1.3.2. Let C be a real number and suppose that along every geodesic

γ in M there exists a parallel, normal vector field wγ such that the sectional

curvature K(γ̇, wγ) is always equal to C.

• If C = 0, M has higher Euclidean rank.

• If there is a constant a such that C = −a2, M has higher hyperbolic rank.

• If there is a constant a such that C = a2, M has higher spherical rank.

Hamenstädt was the first to work with a notion of rank other than Euclidean

rank. She showed that a compact manifold with curvature bounded above by

−a2 which has higher hyperbolic rank is a locally symmetric space [20]. Shankar,

Spatzier and Wilking extended rank-rigidity into positive curvature by defining

spherical rank. They proved that a complete manifold with curvature bounded

above by a2 and with higher spherical rank is a compact, rank-one locally sym-

metric space [26].

These results settle many rank-rigidity questions, but leave questions about

other curvature settings open (see [26] for an excellent overview). This thesis

proves the following theorem, which can be applied to various settings in non-

positive curvature.

Theorem 1. Let M be a compact, (Euclidean) rank-1, nonpositively curved man-

ifold. Suppose that along every geodesic in M there exists a parallel vector field

making sectional curvature −a2 with the geodesic direction, that is, M has higher

hyperbolic rank. If M is odd-dimensional, or if M is even-dimensional and satis-

fies the sectional curvature pinching condition −Λ2 < K < −λ2 with λ/Λ > .93

then M has constant negative curvature equal to −a2.
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Note that the spaces under consideration are non-positively curved, rank-1

spaces. The notion of rank involved in “rank-1” is Euclidean rank and the spaces

here have higher hyperbolic rank but do not have higher Euclidean rank. Roughly

speaking, a non-positively curved, rank-1 manifold behaves almost everywhere

like a strictly negatively curved manifold.

The main tool involved in proving Theorem 1 is dynamical – the frame flow.

Definition 1.3.3 (Frame bundle). For a Riemannian manifold M and integer

1 ≤ k ≤ n the k-frame bundle on M is the bundle with base space M and fiber

over p the set of ordered, orthonormal k-frames of tangent vectors at p. One

denotes this space by StkM .

StnM is a principal bundle over M , with structure group SO(n). More often

in this chapter one regards StnM as a bundle over T 1M with a frame lying in

the fiber over its first vector. Under this view, the bundle has structure group

SO(n− 1).

Definition 1.3.4 (Frame flow). The frame flow Ft is the flow on StkM that takes

a k-frame {v1, . . . vk} to the k-frame {gtv1, ‖t v2, . . . , ‖t vk}, where ‖t denotes

parallel translation along the geodesic with initial tangent vector v1.

Note that St1M = T 1M and the frame flow on this space is the geodesic

flow. The frame flow is always a suspension of the geodesic flow as follows. Let

π : StkM → T 1M send any frame to its first vector. Then the following diagram

commutes:

StkM
Ft //

π

��

StkM

π

��
T 1M

gt // T 1M
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The proof of Theorem 1 simplifies considerably under the assumption that M

has strictly negative curvature. In fact, for negative curvature the full frame flow

is ergodic under the conditions of Theorem 1 in all dimensions but 7 and 8 ([9]

for odd dimensions, [10] for even dimensions). Then the proof of Theorem 1 is

immediate by considering a frame with dense orbit – such a frame will ‘carry’

the −a2-curvature frame {γ̇, wγ} arbitrarily close to any 2-frame, showing that

the sectional curvature everywhere is −a2. For dimensions 7 and 8 ergodicity

of the full frame flow holds under very strong curvature pinching (see [11]) but

under the curvature restrictions of Theorem 1 one only has ergodicity of the 2-

frame flow. Note that ergodicity of this flow alone does not establish Theorem

1 since the set of 2-frames giving the distinguished sectional curvature −a2 may,

a priori, have zero measure. However, the ergodic theory of these types of flows,

developed by Brin, proceeds via explicit geometric descriptions of the ergodic

components and this allows Theorem 1 to be obtained from the 2-frame flow

dynamics alone. The proof proceeding via 2-frame flow gives the result in the

exceptional dimensions 7 and 8 in negative curvature. In addition, it suggests an

adaptation to the rank-1 nonpositive curvature setting, where the ergodic theory

of frame flows has not been developed. The simplifications possible in the strictly

negative curvature setting will be noted throughout the chapter, but observe that

although obtaining the result for nonpositively curved rank-1 spaces necessitates

a more technical proof, the resulting theorem forms a better complement to the

rank-rigidity theorem of Ballmann and Burns-Spatzier.

Note that, unlike previous rank-rigidity results, Theorem 1 allows for situa-

tions where the distinguished curvature −a2 is not extremal. However, in the
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cases where −a2 is extremal the hypotheses of our theorem can be weakened, as

demonstrated in section 2.4. The following two results are then easy corollaries

of Theorem 1:

Corollary 1. Let M be a compact, rank-1 manifold with sectional curvature

−1 ≤ K ≤ 0. Suppose that along every geodesic in M there exists a Jacobi

field making sectional curvature −1 with the geodesic direction. If M is odd-

dimensional, or if M is even-dimensional and satisfies the sectional curvature

pinching condition −1 ≤ K < −.932 then M is hyperbolic.

Corollary 2. (compare with Hamenstädt [20]) Let M be a compact manifold

with sectional curvature bounded above by −1. Suppose that along every geodesic

in M there exists a Jacobi field making sectional curvature −1 with the geodesic

direction. If M is odd-dimensional, or if M is even-dimensional and satisfies the

sectional curvature pinching condition −(1/.93)2 < K ≤ −1 then M is hyper-

bolic.

Corollary 1 is a new rank-rigidity result analogous to those described above.

This is the first positive result for lower-rank, i.e. when the distinguished cur-

vature value is the lower curvature bound; [26] provides a discussion of coun-

terexamples to lower spherical and Euclidean rank-rigidity. Corollary 2 provides

a shorter proof of Hamenstädt’s result, under an added pinching constraint in

even dimensions.

In [13], Connell showed that rank-rigidity results can be obtained using only

a dynamical assumption on the geodesic flow, namely an assumption on the

Lyapunov exponents at a full-measure set of unit tangent vectors. His paper

deals with the upper-rank situations treated by Ballmann, Burns-Spatzier and
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Hamenstädt. He proves that having the minimal Lyapunov exponent allowed by

the curvature restrictions attained at a full-measure set of unit tangent vectors is

sufficient to apply the results of Ballmann and Burns-Spatzier or Hamenstädt. In

the lower-rank setting of this paper, this viewpoint translates into the following:

Theorem 2. Let M be a compact, rank-1 manifold with sectional curvature

−a2 ≤ K ≤ 0, where a > 0. Endow T 1M with a fully supported ergodic measure;

one can take the measure of maximal entropy or, if the curvature is known to

be negative, the Liouville measure. Suppose that for a full-measure set of unit

tangent vectors v on M the maximal Lyapunov exponent at v is a, the maximum

allowed by the curvature restriction. If M is odd-dimensional, or if M is even-

dimensional and satisfies the sectional curvature pinching condition −a2 ≤ K <

−λ2 with λ/a > .93 then M is of constant curvature −a2.

The adaptation of Connell’s arguments for this setting is discussed in section 2.5.

The work of Brin and others on frame flow for negatively curved manifolds

is the starting point for the arguments of this chapter; the results needed are

summarized in section 2.1 (see also [8] for a survey of the area). Although none

of his work is undertaken for rank-1 nonpositively curved manifolds, the ideas

used in this paper to deal with that situation are clearly inspired by Brin’s

work. The proof will proceed as follows. One utilizes the transitivity group Hv,

defined for any vector v in the unit tangent bundle of M , which acts on v⊥ ⊂

T 1M . Essentially, elements of Hv correspond to parallel translations around

ideal polygons in M ’s universal cover (see Definition 2.1.2 below). In negative

curvature, Brin shows that this group is the structure group for the ergodic

components of the frame flow (see, e.g., [8] or [7]). For the rank-1 nonpositive
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curvature case the definition of this group must be adjusted (see Definition 2.2.4)

and the proof uses only that it is the structure group for a subbundle of the

frame bundle. The considerations for the rank-1 case are discussed in section

2.2. Section 2.3 shows that Hv preserves the parallel fields that make curvature

−a2 with the geodesic defined by v. Finally, application of the results on the 2-

frame flow of Brin-Gromov (adapted to the rank-1 case) and Brin-Karcher imply

that Hv acts transitively on v⊥ and prove that the curvature of M is constant.



CHAPTER II

Frame Flow Dynamics and Hyperbolic Rank Rigidity

2.1 Notation and background

2.1.1 Notation

Begin by fixing the following notation:

• M : a compact, rank-1 Riemannian manifold with nonpositive sectional cur-

vature, M̃ its universal cover, M̃(∞) the boundary at infinity.

• T 1M and T 1M̃ : the unit tangent bundles of M and M̃ , respectively.

• StkM : the k-frame bundle of ordered, orthonormal k-frames on M .

• gt: the geodesic flow on T 1M or T 1M̃ .

• Ft: the frame flow on StkM ; when clear, k will not be referenced.

• W s
g and W u

g : the foliations of T 1M̃ given by inward and outward pointing

normal vectors to horospheres.

• µ: the Bowen-Margulis measure of maximal entropy on T 1M .

• γv(t): the geodesic in M or M̃ with velocity v at time 0.

• wv(t): a parallel normal vector field along γv(t) making the distinguished

curvature −a2 with γ̇v(t).

18
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• K(·, ·): the sectional curvature operator.

Note that π : StkM → T 1M mapping a frame to its first vector is a fiber

bundle with structure group SO(k − 1) acting on the right; StnM is a principal

bundle. The measure µ is used in place of the standard Liouville measure as it

has better known dynamical properties for rank-1, nonpositively curved spaces

(see section 2.2). In the negative curvature setting Liouville measure can be

used. Unless otherwise specified, µ and its product with the standard measure

on the fibers of StkM inherited from the Haar measure on SO(n − 1) will be

the measures used in all that follows. In negative curvature, W s
g and W u

g are the

stable and unstable foliations for the geodesic flow.

2.1.2 Background

In negative curvature, Brin develops the ergodic theory of frame flows as

summarized below. Section 2.2 discusses how suitable portions of this setup can

be generalized to the rank-1 setting.

First, the frame flow also gives rise to stable and unstable foliations W s
F and

W u
F of StkM as shown by Brin (see [8] Prop. 3.2). Brin notes that the existence

of these foliations can be established in two ways, either by applying the work

of Brin and Pesin on partially hyperbolic systems or by utilizing the exponential

approach of asymptotic geodesics. In the second approach the leaves of the

foliation are constructed explicitly – they sit above the stable/unstable leaves

for the geodesic flow, and α and α′ are in the same leaf if the distance between

Ft(α) and Ft(α
′) goes to zero as t → ∞ for the stable leaves, or t → −∞ for

the unstable leaves. The following proposition makes possible this definition of

W ∗
F (α) by establishing that frames asymptotic to α exist and are unique. The
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proof follows the sketch given by Brin in [8].

Proposition 2.1.1. Let v be a unit tangent vector and let α be a k-frame with

first vector v. Let v′ ∈ W s
g (v) (respectively W u

g (v)) so that the distance between

gt(v) and gt(v
′) goes to zero exponentially fast as t→∞ (resp. t→ −∞). Then

there exists a unique k-frame α′ with first vector v′ such that the distance between

Ft(α) and Ft(α
′) goes to zero as t→∞ (resp. t→ −∞).

Note that in a compact, negatively curved manifold any two asymptotic vec-

tors approach each other exponentially fast so this proposition allows one to

define all leaves of the foliation. In rank-1 spaces this may no longer be the case;

thus exponential approach has been added as a hypothesis to the proposition as

it will be used for the rank-1 case later in the chapter.

Proof. Assume v′ ∈ W s
g (v); the unstable case is analogous. Uniqueness of the

limit is simple since it is clear that two different frames cannot both approach α.

It remains only to show existence.

For t large enough, gt(v) and gt(v
′) are very close to each other, and then

for every frame β with first vector gt(v) there exists a unique frame, call it

f(β), which minimizes the distance from β among frames with first vector gt(v
′).

To approximate the unique frame α′ one is looking for, consider the frames

α′t = F−t(f(Ft(α))). One wants to show that the α′t have a limit as t→∞; this

limit will clearly be α′.

Consider the sequence α′n for n ∈ N. Since the frame flow is smooth, by

choosing large enough T the difference between the frame flow along the segments

[gT (v), gT+1(v)] and [gT (v′), gT+1(v′)] can be made arbitrarily small, and thus if

the α′n have a limit, it must be a limit for the α′t. Again, since the frame flow
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is smooth and fibrewise isometric and since the distance between the geodesics

decreases exponentially fast, the distance d(α′n, α
′
n+1) goes to zero exponentially

fast as well. Note then that d(α′n, α
′
m) ≤

∑m−1
i=n d(α′i, α

′
i+1) ≤

∑∞
i=n d(α′i, α

′
i+1).

As the summands go to zero exponentially fast the last sum converges and given

ε > 0 one can pick n so large that this tail sum is less than ε. Then one sees that

the α′n form a Cauchy sequence so they have a limit as desired.

Let p(v, v′) be the map from the fiber of StkM over v to the fiber over v′ that

takes each α to α′ = π−1(v′)∩W s
F (α). Note that p(v, v′) corresponds to a unique

isometry between v⊥ and v′⊥ and commutes with the right action of SO(k − 1).

Most of this chapter will deal with the maps p(v, v′) acting on 2-frames. One

can think of p(v, v′)(α) as the result of parallel transporting α along γv(t) out

to the boundary at infinity of M̃ and then back to v′ along γv′(t). If v′ and v

belong to the same leaf of W u
g there is similarly an isometry corresponding to

parallel translation to the boundary at infinity along γ−v and back along γ−v′ .

This isometry will also be denoted by p(v, v′). In the spirit of Brin (see [8] Defn.

4.4) one defines the transitivity group at v as follows:

Definition 2.1.2. Given any sequence s = {v0, v1, . . . , vk} with v0 = v, vk =

gT (v) such that each pair {vi, vi+1} lies on the same leaf of W s
g or W u

g , one has

an isometry of v⊥ given by

I(s) = F−T ◦
k−1∏
i=0

p(vi, vi+1).

The closure of the group generated by all such isometries is denoted by Hv and

is called the transitivity group.

The idea of the transitivity group is that it is generated by isometries coming
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Figure 2.1: An element of the transitivity group

from parallel translation around ideal polygons in M̃ with an even number of

sides, such as the one shown in figure 2.1.

Note that this definition differs slightly from that in Brin’s work. Brin requires

that vk = v and thus there is no F−T term in his formula for I(s). Brin proves

that his group describes the ergodic components of the frame flow. He shows in

[7] that the ergodic components are subbundles of StkM with structure group a

closed subgroup of SO(n−1), now acting from the left (see also [8], section 5 for

an overview). In addition, his proof demonstrates that the structure group for the

ergodic component is the transitivity group (see [8] Remark 2 or [7] Proposition

2). Note that the action of Hv can be taken to be a left action as it commutes

with the SO(k − 1) action of the structure group. This can be seen from noting

that p(v, v′)(α) · g = p(v, v′)(α · g) for any g in the structure group, and that
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these maps define the transitivity group. The proof that this group gives the

ergodic components follows the Hopf argument for ergodicity, showing that the

ergodic component is preserved under motion along stable and unstable leaves,

and using the Birkhoff ergodic theorem to show that switching from stable to

unstable also preserves the component.

The transitivity group as defined here is certainly at least as large as that

defined by Brin. On the other hand, the added F−T term preserves the ergodic

components so this group still describes ergodic components and therefore is, in

the end, the same as Brin’s. The advantage to this formulation of the definition

is that it allows all ideal polygons, not just those that are ‘equilateral’ in the

sense that they can be traversed only by following leaves of the foliations. The

explicit geometric description of the ergodic components given here is the central

inspiration for the proof.

Two results on the ergodicity of the 2-frame flow are used in the proof.

Theorem 2.1.3. (Brin-Gromov [9] Proposition 4.3) If M has negative sectional

curvature and odd dimension then the 2-frame flow is ergodic.

Theorem 2.1.4. (Brin-Karcher [10]) If M has sectional curvature satisfying

−Λ2 < K < −λ2 with λ/Λ > .93 then the 2-frame flow is ergodic.

Theorem 2.1.4 is not directly stated as above in [10], rather it follows from

remarks made in section 2 of that paper together with Proposition 2.9 and the

extensive estimates carried out in the later sections.

2.1.3 A dynamical lemma

The following dynamical lemma is one of the main tools of the proof. It will

be used in the proof of Lemma 2.2.3 and in the arguments of Section 2.3.
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Lemma 2.1.5. Suppose γ(t) is a recurrent geodesic in M with a parallel normal

field P (t) along it such that K(P (t), γ̇(t))→ C as t→∞. Then K(P (t), γ̇(t)) ≡

C for all t.

Proof. Since γ(t) is recurrent one can take an increasing sequence {tk} tending to

infinity such that γ̇(tk) approaches γ̇(0). As the parallel field P (t) has constant

norm and the set of vectors in γ̇v(t)
⊥ with this norm is compact, one can, by

passing to a subsequence, assume that P (tk) has a limit G(0). Extend G(0) to a

parallel vector field G(t) along γ(t).

By construction, K(G(0), γ̇(0)) = limk→∞K(P (tk), γ̇(tk)) = C. In addition,

for any real number T , the recurrence γ̇(tk) → γ̇(0) implies recurrence γ̇(tk +

T ) → γ̇(T ). By continuity of the frame flow, P (tk + T ) → G(T ) for the vector

field G defined above. Thus G(t) makes curvature C with γ̇(t) for any time t.

One can repeat the argument above, now letting G(t) recur along the same

sequence of times to produce G1(t), and likewise Gi(t) recur to produce Gi+1(t),

forming a sequence of fields all making curvature identically C with the geodesic

direction. Now, observe that G(0) = P (0) · g for some g ∈ SO(n− 1). Note here

that g is not well defined by looking at P and G alone, but will be well defined

if we consider n-frame orbits with second vector P recurring to n-frames with

second vector G(0); this is the g one utilizes. By construction and the fact that

the SO(n − 1) action commutes with parallel translation, Gi(0) = P (0) · gi+1.

SO(n − 1) is compact, so the {gi} have convergent subsequences. In addition,

since the terms of this sequence are all iterates of a single element, one can choose

a subsequence converging to the identity. Let gij+1 be such a sequence. Then

Gij(t) approach the original field P (t) showing that P makes constant curvature
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C with γ̇ as well.

2.2 Extensions to rank-1 spaces

This section discusses some details of the extension to rank-1, nonpositively

curved spaces, and notes how the necessary results on the dynamics of the frame

flow can be appropriated to this situation.

2.2.1 The measure of maximal entropy

The measure of maximal entropy µ was developed for rank-1 spaces by Knieper

in [24] and is constructed there as follows. Let {νp}p∈M̃ be the Patterson-Sullivan

measures on M̃(∞). Fix any p ∈ M̃ . Let GE be the set of pairs (ξ, η) in M̃(∞)

that can be connected by a geodesic. Then dµ̄(ξ, η) = f(ξ, η)dνp(ξ)dνp(η) defines

a measure on GE; f is a positive function which can be chosen to make the

measure invariant under π1(M).

Let P : T 1M̃ → GE be the projection P (v) = (γv(−∞), γv(∞)). One obtains

a gt and π1 invariant measure µ̃ on T 1M̃ by setting, for any Borel set A of T 1M̃ ,

µ̃(A) =

∫
GE
vol(π(P−1(ξ, η) ∩ A))dµ̄(ξ, η),

where here π : T 1M̃ → M̃ is the standard projection and vol is the volume

element on the submanifolds P−1(ξ, η). The projection of this measure to T 1M

is µ, the measure of maximal entropy.

This chapter needs three key facts about this measure. First, µ is ergodic

for the geodesic flow (see [24] Theorem 4.4). Second, µ has full support. This

follows from the facts that µ is supported on the rank-1 vectors (see [24] again)

and that the rank-1 vectors are dense in T 1M (see e.g. [1]). Third, µ is absolutely

continuous for the foliations W s
g and W u

g . Absolute continuity of a measure for
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a foliation is a way of asking that a Fubini-like property hold for the foliation

when integrating with respect to the measure (see Brin’s appendix to [3]). In

this situation, it is immediate from the definition of the measure.

2.2.2 The transitivity group

The next task is to extend the definition of the transitivity group to rank-

1, nonpositively curved spaces. The central difficulty here is that the distance

between asymptotic geodesics may approach a nonzero constant. Thus it is no

longer clear whether foliations like W s
F and W u

F can be defined. This difficulty can

be overcome by avoiding defining foliations for the frame flow, but still defining

maps p(v, v′) used to produce a transitivity group. Section 2.3 will show that

the transitivity group preserves the distinguished parallel fields. The technical

points involved in the definitions of the p-maps and the transitivity group are

necessary to make that proof work.

Note the following new terminology. As always, geodesic rays which remain

within a bounded distance of one another are called asymptotic. To distinguish

an important property, call rays where the distance is not only bounded but goes

to zero strictly asymptotic.

Let v, v′ be vectors in T 1M̃ . The goal in this section is the definition of maps

p(v, v′) mapping the k-frames in StkM̃ with first vector v to k-frames with first

vector v′. One suppresses reference to k in the notation as it will be clear from

context what k is (usually 2). Begin by defining Ω′ ⊂ M̃(∞) as the set of all ξ

satisfying

• ξ is the endpoint of a rank-1 geodesic which is recurrent (when projected to

M)
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• almost all (with respect to the Patterson-Sullivan measures) geodesics end-

ing at ξ are recurrent (when projected to M).

Since recurrence and rank 1 are full-measure conditions for the ergodic measure

µ and µ is absolutely continuous for gt this is a full-measure set of M̃(∞) for

any Patterson-Sullivan measure on M̃(∞). In particular, it is dense, as the

Patterson-Sullivan measures have full support.

The first condition is placed on Ω′ to allow the proof of the following lemma;

the second will be needed for the work in section 2.3.

Lemma 2.2.1. There exists a full-measure subset Ω ⊂ Ω′ such that if ξ ∈ Ω then

any two geodesics γ̃1 and γ̃2 in M̃ with γ̃1(∞) = γ̃2(∞) = ξ are exponentially

strictly asymptotic.

Proof. First one shows that the distance between γ̃1 and γ̃2 goes to zero (see also

[24] Prop. 4.1). As ξ ∈ Ω′, it is the end point of a rank-1, recurrent geodesic;

call this geodesic γ̃v. Suppose γ̃1 and γ̃2 are not strictly asymptotic. Then γ̃v

is not strictly asymptotic to one of these geodesics, without loss of generality,

say γ̃1. Since γ̃v is recurrent when projected to M there exists a sequence {φi}

of isometries of M̃ and a sequence of real numbers {ti} tending to infinity such

that φi(gti(v))→ v as i→∞. Consider the sequences of geodesics {φi(γ̃v)} and

{φi(γ̃1)}. By choice of the φi the first sequence converges to γ̃v. Also, since γ̃1 is

asymptotic to γ̃v, after perhaps passing to a subsequence, the second sequence

converges to a geodesic, call it γ̄. As γ̃v and γ̃1 are not strictly asymptotic, γ̄ 6= γ̃v,

but since they are asymptotic, γ̄(−∞) = γ̃v(−∞) and γ̄(∞) = γ̃v(∞). Then the

flat strip theorem (see [17]) implies that γ̃v and γ̄ bound a totally geodesically

embedded flat strip, contradicting the fact that γ̃v is rank 1.
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Now one shows that this convergence is exponential for almost all ξ. Taking

Ω to be the intersection with Ω′ of the full-measure set of M̃(∞) for which the

following part of the proof works, one obtains the lemma.

Let γ̃ be a rank-1 geodesic in M̃ such that, when projected to γ on M , returns

to any neighborhood of γ̇(0) a positive fraction of the time. Using the Birkhoff

ergodic theorem, it is easy to see that this is a full-measure set of geodesics, and

the forward endpoints of these geodesics will be the full-measure set in M̃(∞)

one uses to obtain Ω. Take any γ̃′ forward asymptotic to γ̃. The argument below

will show that these two geodesics approach each other exponentially fast, which

is enough to show that any two geodesics with endpoint γ̃(∞) approach each

other exponentially fast.

By the work above, γ̃′ is strictly asymptotic to γ̃; hence, after a finite time, γ̃′

can be assumed to be very close to γ̃, so one can assume that ˙̃γ′(0) ∈ B̄ε( ˙̃γ(0)),

the closed ε-ball around ˙̃γ(0) for some positive ε. (Here, parametrize geodesics

so that ˙̃γ′(0) lies on the stable manifold for ˙̃γ(0).) For any such γ̃′, there exists

a time Tγ̃′ such that

d(γ̃(Tγ̃′), γ̃
′(Tγ̃′)) <

1

2
d(γ̃(0), γ̃′(0)).

By continuity of the geodesic flow and compactness of the closed ε-ball, there

exists a single time T such that this equation holds for all γ̃′.

One now notes that the geodesic flow must decrease distances similarly nearby

˙̃γ(0). In particular, it follows from the continuity of the geodesic flow and the

stable foliation that there exists a δ > 0 (depending on ˙̃γ(0) and chosen smaller

than ε) such that for all v ∈ T 1M̃ δ-close to ˙̃γ(0) the geodesic flow for time T

decreases distance between γ̃v and asymptotic geodesics ε/2-close to it by a factor
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of at least one half as well. Since, by assumption, γ̃ returns to such a δ-ball about

its starting point a positive fraction of the time, and since on a non-positively

curved manifold the distances between asymptotic geodesics never increase, it is

clear that γ̃ and γ̃′ approach each other at an exponential rate, as desired.

Let v′ ∈ W s
g (v) (the case v′ ∈ W u

g (v) proceeds in a similar manner). One

makes definitions of p(v, v′) in two cases.

Case I: γv(∞) ∈ Ω. Lemma 2.2.1 provides exponential convergence of the

geodesics in question. Then Proposition 2.1.1 allows one to define p(v, v′) map-

ping frames over v to frames over v′ as in the negative curvature case.

Case II: γv(∞) /∈ Ω. Define a family of maps {p{ξn}(v, v′)} in the following

manner. Let γv(∞) = ξ. Consider all sequences of points {ξn} in Ω that ap-

proach ξ in the sphere topology on M̃(∞). As noted, Ω is dense in M̃(∞), so

one can find such sequences approaching any ξ. Let cn and c′n be the geodesics

connecting the footpoints of v and v′ to ξn such that cn(0) is the footpoint of v

and ċ′n(0) ∈ W s
g (ċn(0)) (see figure 2.2). The maps p(ċn(0), ċ′n(0)) are defined un-

der Case I. As n tends to infinity, ċn(0)→ v and ċ′n(0)→ v′ so limit points of the

maps {p(ċn(0), ċ′n(0))} will give maps from frames over v to frames over v′. Let

us restrict the allowed sequences {ξn} to only those for which {p(ċn(0), ċ′n(0))}

has a unique limit; call that limit p{ξn}(v, v
′). These will be the allowed maps for

the second case of the definition.

As before, the transitivity group will be defined as a composition of the p- and
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Figure 2.2: Adjusting the definition of the transitivity group

p{ξn}-maps corresponding to translations around ideal polygons. Again, nonpos-

itive curvature necessitates some technical considerations. First, as noted in [18]

1.11, not all pairs of points on M̃(∞) can be connected by geodesics. However,

as noted in the following lemma, a given point can be connected to almost all

other points on M̃(∞).

Lemma 2.2.2. Let ξ be an element of M̃(∞) and let Aξ be the subset of M̃(∞)

consisting of points that can be connected to ξ by geodesics. Then Aξ contains

an open, dense set.

Proof. This lemma simply works out some consequences of [1]. Let A′ξ ⊂ Aξ be

the set of all points at infinity which can be connected to ξ by a geodesic that

does not bound a flat half-plane. Ballmann’s Theorem 2.2 (iii) tells one that A′ξ

contains all endpoints of periodic geodesics that do not bound a flat half-plane.

Together with his Theorem 2.13, this implies that the set A′ξ is dense. In addition,

Ballmann’s Lemma 2.1 implies that A′ξ is open, proving the Lemma.



31

The following technical criterion is also necessary for the new definition of the

transitivity group:

Composition Criterion. Let v be in T 1M̃ and let ξ = γv(∞), η = γv(−∞) /∈

Ω be the endpoints at infinity of γv. Let ξn → ξ and ηn → η be sequences in Ω.

One says the pair ({ξn}, {ηn}) satisfies the composition criterion for v if ηn ∈ Aξn

for all n and γn → γv as n→∞, where γn is the geodesic connecting ξn and ηn.

This criterion will be required of pairs ({ξn}, {ηn}) if one is to compose the

maps p{ξn} and p{ηn} in forming elements of the transitivity group. It will be

important in the proof of Proposition 2.3.2. One must first, however, establish

that, given {ξn} and v, there exist sequences {ηn} that satisfy the composition

criterion for v with {ξn}. Without this fact the definition of the transitivity

group could be vacuous.

Lemma 2.2.3. Given v ∈ T 1M̃ with γv(∞) = ξ, γv(−∞) = η and a sequence

ξn → ξ in Ω, there exists a sequence ηn → η in Ω such that {ξn} and {ηn} satisfy

the composition criterion for v.

Proof. For any ζ ∈ M̃(∞) let prζ : M̃ → M̃(∞) be the projection defined

by setting prζ(y) equal to γ(∞) where γ is the geodesic with γ(−∞) = ζ and

γ(0) = y. Let x be the footpoint of v and BR(x) be the ball of radius R around

x in M̃ .

Lemma 3.5 in [24] provides that given x, there exists an R > 0 such that

prξn(BR(x)) contains an open set U in M̃(∞). Examining Knieper’s proof one

sees that R can be taken to be any number greater than the distance from x to
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some rank-1 geodesic c which has an endpoint at ξn. Consider the geodesic cn

joining x and ξn. Since ξn ∈ Ω, it is the endpoint of a rank-1, recurrent geodesic,

call it γ. Lemma 2.2.1 then implies that the geodesic cn is strictly asymptotic to

γ and then Lemma 2.1.5 can be applied with C = 0 to show that cn must be of

rank 1 as γ is. Thus the rank-1 geodesic c needed by Knieper can be taken to

be cn. It is distance 0 from x, therefore R can be taken to be arbitrarily small;

in particular take Rn = 1/2n for ξn.

For each Rn, the open set Un provided by Knieper contains elements of the set

Ω∩Aξn since Aξn is open and dense and Ω has full measure. Pick ηn ∈ Un∩Ω∩Aξn

to form the sequence {ηn}. Then the geodesics γn connecting ξn and ηn enter

B1/2n(x) for all n, and as ξn → ξ and ηn → η one must have γn → γv. Thus

({ξn}, {ηn}) satisfies the composition criterion for v as desired.

The transitivity group is defined via the following two definitions. One starts

by defining its action on the frames above one particular vector v.

Definition 2.2.4. Let v ∈ T 1M̃ be such that γv(∞) and γv(−∞) are in Ω.

Consider any sequence s = {v0, v1, . . . , vk} with v0 = v, vk = gT (v) for some real

T , such that each pair {vi, vi+1} lies on the same leaf of W s
g or W u

g . Furthermore,

take for each pair {vi, vi+1} with vi falling under Case II a choice of a sequence

{ξin} ⊂ Ω as described above. One requires that ({ξin}, {ξi+1
n }) satisfies the

composition criterion for vi+1. Then one has an isomorphism of v⊥ given by

I(s) = F−T ◦
k−1∏
i=0

p−(vi, vi+1).

Here p−(vi, vi+1) = p(vi, vi+1) when vi falls under Case I and p−(vi, vi+1) =

p{ξin}(vi, vi+1) when vi falls under Case II. The closure of the group generated by

all such isometries is denoted by Hv.
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One now extends the action of this group to any w ∈ T 1M̃ by connecting v

to w by a segment of an ideal polygon. To do so one simply needs a point ξ in

Aγv(∞) ∩ Aγw(∞). By Lemma 2.2.2 this set is open and dense, so in fact one can

choose ξ ∈ Ω ∩ Aγv(∞) ∩ Aγw(∞). Let g be the isometry from v⊥ to w⊥ given by

frame flow along the segment connecting v and w via ξ. More specifically, let v1

lie on the geodesic connecting γv(∞) and ξ such that v1 ∈ W s
g (v), let v2 lie on

the geodesic connecting ξ and γw(∞) such that v2 ∈ W u
g (v1), and let T ∈ R be

such that gT (w) ∈ W s
g (v2). Then let

(2.1) g = F−T ◦ p−(v2, gT (w)) ◦ p−(v1, v2) ◦ p(v, v1).

In the negative-curvature case, it is clear that Hw = gHvg
−1. Thus one com-

pletes the definition of the transitivity group by making the following definition:

Definition 2.2.5. Let Hw := gHvg
−1.

Note that the choices of v and ξ only affect the group Hw up to multiplica-

tion by an element of Hv, so the specific choices are not relevant. In addition,

attempting to define elements of Hw for vectors w for which neither endpoint is

in Ω by ideal polygons based at γw is problematic as, due to the composition

criterion, the composition of such elements may not be in the group. Hence one

defines such Hw via Hv where no such issues arise. The result is a well-defined

action of an abstract group H isomorphic to Hv on the frame bundle, which

in the negatively curved case essentially reduces to Brin’s definition. Again, as

the p−(v, v′)-maps constructed here are invariant under elements of the structure

group SO(k − 1), the action of H commutes with the action of SO(k − 1) and
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thus takes the form of a left action. Finally, the work above takes place in T iM̃ .

Since everything in the definition is invariant under action of isometries of M̃ ,

one has a well-defined transitivity group for any v ∈ T 1M .

2.2.3 The subbundle given by H

This section constructs a subbundle of StkM for any k ≤ n with an action of

H on it.

Definition 2.2.6. Given a k-frame α based above a vector v ∈ Ω let Q(α) ⊆

StkM be the smallest set containing α and closed under all h ∈ Hv, Ft for all t

and all isometries g as in equation 2.1.

Proposition 2.2.7. Q(α) is a subbundle of StkM .

Proof. Since for any w ∈ T 1M one has an isometry g as in Definition 2.2.5, we

see that π(Q(α)) = T 1M .

Let ᾱ be an extension of the k-frame α to an n-frame with first k vectors

given by α. One first shows that Q(ᾱ) is a subbundle. By construction, Q(ᾱ)

admits an action of H, an abstract group isomorphic to Hv. It is clear that

Q(ᾱ) ∩ π−1(w) is the Hw orbit of g(ᾱ) for any w ∈ T 1M , where g is as in

Equation 2.1. Furthermore, H acts freely on StnM so all orbit types of this

action are the same. Thus Theorem 5.8 from [6] applies and π : Q(ᾱ)→ T 1M is

a fiber bundle with structure group H as desired.

For k < n, embed SO(n−k) into SO(n−1), the structure group for StnM so

that it acts on the last n−k vectors in a given frame. The map π̄ : StnM/SO(n−

k) = StkM → T 1M is the subbundle of k-frames. To produce Q(α) one would
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like to apply the same process to Q(ᾱ) but must proceed carefully. Let

Kᾱ = {κ ∈ SO(n− k)|ᾱ · κ = h(κ) · ᾱ for some h(κ) ∈ Hv}

where SO(n − k) acts on ᾱ via the same embedding. This is the stabilizer of

the first k vectors in ᾱ (that is, α) in the subgroup of the structure group that

preserves the Hv-orbit of ᾱ. Examine this stabilizer for any other frame ᾱ′ in

Q(ᾱ). Any such ᾱ′ takes the form h′ · g · ᾱ for some h′ ∈ Hw and g as in equation

2.1. Then compute

Kᾱ′ = {κ ∈ SO(n− k)|ᾱ′ · κ = h(κ) · ᾱ′ for some h(κ) ∈ Hw}

= {κ ∈ SO(n− k)|h′ · g · ᾱ · κ = h(κ)h′ · g · ᾱ for some h(κ) ∈ Hw}.

But h′ · g · ᾱ · κ = h(κ)h′ · g · ᾱ if and only if ᾱ · κ = g−1 · (h′)−1h(κ)h′ · g · ᾱ,

and g−1 · (h′)−1h(κ)h′ · g is an element of Hv so one sees that Kᾱ′ = Kᾱ for

all ᾱ′ ∈ Q(ᾱ). Refer to this group simply as K, and note that K ↪→ H by

κ 7→ h(κ)−1. Thus, one obtains π : Q(α) → T 1M as π̄ : Q(ᾱ)/K → T 1M . The

fibers of this map are of the form H/K everywhere so again apply [6] to see that

one has a fibration, as desired.

Remark 2.2.8. The argument here proves that Q(α) is a topological sub-fiber

bundle – nothing has been claimed about smoothness. C1-smoothness of Q(α)

in the negative curvature case is proven by Brin and is key to his proof that

Q(α) is the ergodic component containing α; here, however, one needs only the

topological result to appropriate the needed results from Brin-Gromov.

Proposition 2.2.9. The transitivity group H acts transitively on the fiber of

2-frames over any v ∈ T 1M .
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Proof. First, note that when n is even one is restricted to strict negative curvature

and this result is Theorem 2.1.4 due to Brin and Karcher. When n is odd the

result is Theorem 2.1.3 due to Brin and Gromov and found in section 4 of [9].

They discuss the proof only in the strict negative-curvature case, but it works

perfectly well in nonpositive curvature. It is included here for completeness.

The work in Proposition 2.2.7 produced a subfibration π : Q(α)→ T 1M with

fiber H/K of the fibration π : StkM → T 1M with fiber SO(n − 1)/SO(n − k).

Restrict attention now to 2-frames, and specifically to St2M |p, the restriction

of the 2-frame bundle to those frames based at a point p of M . This provides

bundles

H/K // Q(α)|p/K

π

��

Sn−2 // St2M |p

π

��

� � i //

Sn−1 Sn−1

where Sn−2 = SO(n− 1)/SO(n− 2) and Sn−1 is the unit tangent sphere above

p. Take b0 ∈ Sn−1 and x0 ∈ π−1(b0) ⊂ H/K. These fibrations, together with

the inclusion map i, give the following commutative diagram, which connects the

homotopy long exact sequences for the fibrations by the induced inclusion map

i∗ (see [21] Theorem 4.41):

πn−1(Q(α)|p/K, x0)
� _

i∗
��

π∗ // πn−1(Sn−1, b0)

∼=
��

∂̄ // πn−2(H/K, x0)� _

i∗
��

πn−1(St2M |p, x0)
π∗ // πn−1(Sn−1, b0)

∂ // πn−2(Sn−2, x0)

Note that ∂ = i∗ ◦ ∂̄. Now suppose H does not act transitively on the fiber of two

frames over some v ∈ T 1M . Then H/K ( Sn−2 so i∗ = 0 on πn−2(H/K, x0) and
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thus ∂ = 0 on πn−1(Sn−1, b0). This implies that the map π admits a section, thus

giving a nonvanishing vector field on Sn−1. If n is odd this is a contradiction.

2.3 The transitivity group and distinguished vector fields

As noted above, the transitivity group is crucial to this chapter’s argument.

This section will show that certain distinguished vector fields wv(t) along γv(t)

are preserved under the action of the transitivity group and use this result to

prove Theorem 1. Throughout it utilizes the dynamical lemma, Lemma 2.1.5,

with C = −a2. Consider, for example, the ideal rectangle defined by v, v1, v2

and v3 as pictured in Figure 2.1. If γv1 and γv3 are positively recurrent and

If γv and γv2 are negatively recurrent, Lemma 2.1.5 implies that the element

of H corresponding to this ideal polygon preserves the distinguished fields. The

following arguments show how this idea can be worked out for all ideal polygons,

first in the negative-curvature case and then in the general case.

2.3.1 The negative curvature case

In the negative-curvature case the argument of this section is considerably

simpler. Consider the situation depicted in Figure 2.1. Lemma 2.1.5 shows that,

when γv1 is recurrent in forward time, the map p(v, v1) preserves the distinguished

vector fields in the sense that it sends a vector from one such field, wv(0), to a

vector from another such field along γv1 . Thus, if in Figure 2.1 γv1 and γv3 are

recurrent in positive time and γv and γv2 are recurrent in negative time, then

the element of Hv given by parallel translation around this ideal rectangle will

map wv(0) to another element of v⊥ which is in a parallel field along γv making

curvature −a2. If these sort of recurrence properties held for all ‘equilateral’ ideal
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polygons based at v one would have that the transitivity group preserves the

distinguished vector fields. One cannot assure that these recurrence properties

are always present, but ergodicity of the geodesic flow on M indicates that they

will be present almost all the time. Furthermore, the fact that elements of the

transitivity group are defined using the continuous foliations provided by Brin

can be used to argue that elements of the transitivity group depend continuously

on the choice of ideal polygon. Thus the transitivity group will preserve the

distinguished vector fields.

2.3.2 The general case

For the general case one needs arguments to deal with the problem of pairs

of geodesics that are asymptotic but not strictly asymptotic, and the fact that

one no longer knows one has a continuous foliation. By assumption, the frame

flow preserves the distinguished vector fields. The only question in terms of how

they behave under the action of elements from the transitivity group is how

they behave when they are transferred across corners of the ideal polygons. As

Lemma 2.1.5 shows, when the geodesics involved are strictly asymptotic and the

second geodesic is recurrent, the fields are transferred as desired. Thus, there are

two problems to deal with: when the second geodesic is not recurrent, and when

the geodesics are not strictly asymptotic. The new definition of the transitivity

group provides a way to deal with both of these issues.

First, note that under Case II of Definition 2.2.5, one defines the maps

p{ξn}(v, v
′) as limits of the maps from the first case of the definition. Thus,

to show that a distinguished field wγ is preserved by some p{ξn}(v, v
′) one needs

to realize wγ as a limit of distinguished fields along the geodesics cn used to
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Figure 2.3: Geodesic configurations for Prop. 2.3.1 and 2.3.2

define the map p{ξn}(v, v
′) (see Figure 2.2). In view of this fact one works with

distinguished fields that can be realized as limits, and ensures that this property

of arising as a limit is also preserved by the p−(v, v′)-maps. In particular, one

will consider distinguished fields wv that arise as limits of distinguished fields

wcn along geodesics cn as depicted in Figure 2.3 and show that such a field is

transferred by a map p−(v, v′) to a field wv′ arising as a limit of fields wdn along

geodesics dn which connect γv′(0) to {ηn} → γv′(−∞). If the next corner to

be traversed falls under Case II, the sequence {ηn} is determined by the map

p{ηn}(v
′, v′′); otherwise one is free to take any sequence. The arguments are

slightly different in the two cases and so are addressed separately:

Case I:

Proposition 2.3.1. Suppose v ∈ T 1M falls under Case I, and that wv is the

limit of wcn. Then for any v′ ∈ W s
g (v) (respectively W u

g (v)), wv′ := p(v, v′)(wv)

is a distinguished field along γv′ arising as a limit of distinguished fields wdn.

Proof. Assume v′ ∈ W s
g (v); the proof for the unstable case is essentially the
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same. Under Case I, γv′ is limit of recurrent geodesics γv′i for v′i ∈ W s
g (v). The

maps p(v, v′i) preserve distinguished fields as demonstrated in Lemma 2.1.5 and

p(v, v′i)→ p(v, v′), so wv′ will be a distinguished field as well.

Now one needs to demonstrate wγv′ as a limit in the proper way. Construct

geodesics dn connecting v′(0) and ηn and bn connecting γv(∞) and ηn as in Figure

2.3. The field wbn := p(v, ḃn(0))(wv) will be a distinguished field by the argument

of the previous paragraph. Likewise, the fields wdn := p(ḃ(0)n, ḋn(0))(wbn) will

be distinguished fields as ηn ∈ Ω falls under Case I. Since the wbn → wv′ it is

clear that the wdn → wv′ and the proof is done.

Case II:

Proposition 2.3.2. Suppose v ∈ T 1M falls under Case II, and that wv is the

limit of wcn. Then for any v′ ∈ W s
g (v) (respectively W u

g (v)), wv′ := p{ξn}(v, v
′)(wv)

is a distinguished field along γv′ arising as a limit of distinguished fields wdn.

Proof. Again, assume v′ ∈ W s
g (v). Since the maps p(ċn(0), ċ′n(0)) are under Case

I, they preserve distinguished fields. Thus, wv′ , which is defined as the limit of

p(ċn(0), ċ′n(0))(wcn), will be a distinguished field.

Immediately, one has that wv′ arises as a limit of distinguished fields along the

geodesics c′n. As in Figure 2.3, let γn be the geodesic connecting ξn and ηn and

let dn be the geodesic connecting the footpoint of v′ and ηn. If γv′(−∞) is not

in Ω the map p{ηn}(v
′, v′′) supplies the sequence {ηn}. In this case one requires

that ({ξn}, {ηn}) satisfies the composition criterion for v′, so c′n, dn and γn all

approach each other (and γv′) as n→∞. If γv′(−∞) is in Ω it is easy to see that

these geodesics still all converge as otherwise one would find a flat strip along

γv′ . Using p-maps under Case I, the fields wc′n can be transfered to distinguished
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fields wγn along γn and subsequently to distinguished fields wdn along dn. It is

then clear that wc′n , wγn and wdn all limit on wv′ ; specifically, wdn → wv′ shows

that wv′ arises as a limit in the desired manner.

This work proves the following proposition:

Proposition 2.3.3. The transitivity group preserves distinguished vector fields

that arise as limits of distinguished fields in the correct manner.

2.3.3 Proof of the main theorem

One can now apply the results of Brin-Karcher from and of Brin-Gromov as

adapted to the rank-1 situation in section 2.2 and prove Theorem 1 easily.

Theorem 1. Let M be a compact, rank-1, nonpositively curved manifold. Sup-

pose that along every geodesic in M there exists a parallel vector field making

sectional curvature −a2 with the geodesic direction. If M is odd-dimensional, or

if M is even-dimensional and satisfies the sectional curvature pinching condition

−Λ2 < K < −λ2 with λ/Λ > .93 then M has constant negative curvature equal

to −a2.

Proof. Proposition 2.3.3 showed that the sectional curvature −a2 fields that arise

in the desired way as limits are preserved by the transitivity group. In the

setting of the theorem, the adapted results of Brin-Gromov and Brin-Karcher

show that the transitivity group acts transitively on v⊥ ⊂ T 1M . In particular,

by considering the orbit of a distinguished field that arises correctly as a limit

one sees that K(·, v) is identically −a2, and the theorem is proved.
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2.4 Parallel fields and Jacobi fields

In [26] a distinction is made between ‘weak’ and ‘strong’ rank. The existence

of parallel fields making extremal curvature is called strong rank; the existence

only of Jacobi fields making extremal curvature is called weak rank. A parallel

field scaled by a solution to the real variable version of the Jacobi equation (where

the standard derivative replaces the covariant derivative) produces a Jacobi field.

Thus, a proof under the less stringent hypothesis of weak rank implies a proof for

strong rank. Hamenstädt’s is the sole result prior to the result of this chapter.

She states her main theorem for parallel fields only, but she shows in Lemma 2.1

that in negative curvature a Jacobi field making maximal curvature is a parallel

field scaled by a function [20]. Essentially, she shows that Jacobi fields making

maximal curvature grow at precisely the rate one finds for the constant curvature

case. Connell accomplishes the same in [13] Lemma 2.3. This, together with some

of the arguments below, shows that these Jacobi fields are in fact parallel fields

scaled by an appropriate function. Therefore, Corollary 2 is a weak-rank result,

needing only the Jacobi field hypothesis.

This section shows that Jacobi fields making minimal curvature with the

geodesic direction are also scaled parallel fields. This will justify the phrasing of

Corollary 1 as a weak-rank result. In this section, 〈·, ·〉 will denote the Rieman-

nian inner product and R(·, ·)· the curvature tensor.

First, note that one need only consider non-vanishing Jacobi fields; hence it

will be enough to prove that stable and unstable Jacobi fields are scaled parallel

fields. Stable Jacobi fields are those which have norm approaching zero as t→∞;

unstable Jacobi fields have the same property in the negative time direction.
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Suppose J(t) is a stable Jacobi field along the geodesic γ(t) making curvature

−a2 with the geodesic (take a > 0 now), where −a2 is the curvature minimum

for the manifold (the modifications of what follows for unstable Jacobi fields are

straightforward). The Rauch Comparison Theorem (see [16] Chapt 10, Theorem

2.3) can be used to show that

(2.2) |J(t)| ≥ |J(0)|e−at.

One would like to show that equality is achieved in (2.2). Write J(t) =

j(t)U(t) where j(t) = |J(t)| and U(t) is a unit vector field. Then the Jacobi

equation for J reads:

(2.3) j′′U + 2j′U ′ + jU ′′ + jR(γ̇, U)γ̇ = 0

where j′ denotes the standard derivative and U ′ denotes covariant derivative.

Taking the inner product of (2.3) with U and noting that 〈U ′′, U〉 = −〈U ′, U ′〉

one obtains

(2.4) j′′ − j(〈U ′, U ′〉+ a2) = 0.

One now knows the following about the magnitude of J : j ≥ 0 by definition,

limt→∞ j(t) = 0 since J is a stable Jacobi field, and j′′ ≥ a2j by (2.4). These

allow the following conclusion; its proof was shown to the author by Jeffrey

Rauch:

Lemma 2.4.1. Let j be a non-negative, real valued function satifsying j′′ ≥ a2j

and limt→∞ j(t) = 0. Then j(t) ≤ j(0)e−at.
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Proof. One has that a2j − j′′ ≤ 0. On the interval 0 ≤ t ≤ R for R � 1 define

gR by gR(0) = j(0), gR(R) = j(R) and a2gR − g′′R = 0. Note that as R → ∞,

gR → j(0)e−at. The claim is that j ≤ gR; the Lemma follows in the limit.

This claim is essentially the maximum principle. First, j ≤ gR holds at 0

and R. Now suppose j − gR has a positive maximum at c ∈ (0, R). Then

(j′′−g′′R)(c) ≤ 0. However, one knows a2(j−gR)−(j′′−g′′R) ≤ 0, so a positive value

of j− gR at c together with a nonpositive value of j′′− g′′R yields a contradiction.

Therefore j ≤ gR holds on all of [0, R] as desired.

This Lemma, together with equation (2.2), provides that |J(t)| = |J(0)|e−at.

Examining equation (2.4) one sees that having the growth rate e−at, as in the

constant curvature −a2 case, implies that U ′ = 0, that is, J is a scaled parallel

field, as desired.

2.5 The dynamical perspective

This section discusses how the results of Connell in [13] can be adapted to

prove Theorem 2 as a simple consequence of Corollary 1. The necessary changes

are for the most part cosmetic; the discussion here is included for completeness,

but the author does not claim to have added anything of substance to Connell’s

work. The notation below that has not already been assigned follows Connell’s

for ease of reference.

Recall that Lyapunov exponents are a tool for measuring long-term asympotic

growth rates in dynamical systems (see Katok and Mendoza’s Supplement to [23],

section S.2, for an exposition). In the setting of the geodesic flow they can be

defined as follows. Let v ∈ T 1M and u ∈ v⊥. Let Ju(t) be the unstable Jacobi

field along γv with initial condition Ju(0) = u. Then, the positive Lyapunov
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exponent at v in the u-direction is

λ+
v (u) = lim sup

t→∞

1

t
log|Ju(t)|.

Define

λ+
v = max

u∈v⊥
λ+
v (u).

This is the maximal Lyapunov exponent at v; the curvature bound −a2 ≤ K

(again, take a > 0) implies that λ+
v ≤ a. Let

Ω = {v ∈ T 1M : λ+
v = a}.

One can rephrase Theorem 2 more succinctly.

Theorem 2. Let M be a compact manifold with sectional curvature −a2 ≤

K ≤ 0. Suppose that Ω has full measure with respect to a geodesic flow-invariant

measure µ with full support. If M is odd dimensional, or if M is even dimensional

and satisfies the sectional curvature pinching condition −a2 ≤ K < −λ2 with

λ/a > .93 then M is of constant curvature −a2.

Connell shows in the upper rank case that the dynamical assumption implies

the geometric one, that is, that the manifold in fact has higher rank, allowing

the application of an appropriate rank-rigidity theorem. He first shows ([13],

Proposition 2.4) that along a closed geodesic λ+
v = a implies the existence of an

unstable Jacobi field making curvature −a2 with the geodesic direction. Essen-

tially, if the Jacobi field giving rise to the Lyapunov exponent does not have this

curvature, it will continually see non-extremal curvature a positive fraction of the

time as it moves around the closed geodesic. This contradicts the supposed value

of the Lyapunov exponent. The lower curvature bound version of the argument
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is exactly the same as that presented by Connell, with the proper inequalities

reversed; also note that the work in section 2.4 of this paper gives the results

analogous to Connell’s Lemma 2.3 necessary for the argument.

It is clear that if a dense set of geodesics have the distinguished Jacobi fields,

then all geodesics will. Since the velocity vectors for closed geodesics are dense in

T 1M , Connell finishes his proof in section 3 of [13] by showing that these vectors

are all in Ω and using the argument of the previous paragraph. Adapted to the

setting of Theorem 2 the argument runs as follows. If w ∈ T 1M is tangent to

a closed geodesic and λ+
w < a the previous paragraph implies that any unstable

Jacobi field along γw must make curvature strictly greater than −a2 a positive

fraction of the time. By continuity, this will also be true of any unstable Jacobi

field along a geodesic γv in a sufficiently small neighborhood of γw (in the Sasaki

metric on T 1M). The ergodic theorem implies that for a full-measure set of

v ∈ T 1M , γv will spend a positive fraction of its life in this small neighborhood

of the periodic geodesic γw; the positivity follows from the fact that µ has full

support. The intersection of this full-measure set with the full-measure set Ω thus

contains vectors v which have λ+
v = a but spend a positive fraction of their life so

close to γw that no Jacobi fields along them can make the minimal curvature −a2

with the geodesic direction during this fraction of the time. In fact, since γw is

compact, so is the closure of this small neighborhood and therefore the curvature

between these Jacobi fields and the geodesics, when in this neighborhood, can

be bounded away from −a2, i.e. K(Ju, γ̇v) > c > −a2 for a fixed c. Having this

curvature bound a positive fraction of the time contradicts λ+
v = a; therefore all

closed geodesics must lie in Ω and the argument is complete.
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Again, this version of the argument, relevant for the lower curvature bound

situation, is the same as that presented by Connell with the proper inequalities

reversed. Thus, the dynamical assumption implies the geometric assumption of

Corollary 1 and Theorem 2 follows. Note that for these arguments the extremal-

ity of the distinguished curvature is essential and one does not obtain a result

that parallels Theorem 1 in allowing non-extremal distinguished curvature.



CHAPTER III

Conclusion

I conclude this thesis with a few remarks on possible extensions of this work

and some open questions. It is useful to include here a summary of rank-rigidity

results taken from [26]. The table refers to results on compact manifolds M ;

weak rank refers to the condition of having a Jacobi field along every geodesic

making extremal curvature with the geodesic direction, strong rank refers to the

same condition for parallel fields. The implication arrows in the table indicate

when a positive result for the weaker, Jacobi field condition implies a positive

result for the stronger, parallel field condition (as in the K ≤ −1 case) or when

a counterexample for the stronger condition furnishes a counterexample to the

weaker condition (as in the K ≥ 0 case).

48
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Compact manifolds

Curvature bound weak rank strong rank

K ≤ 0 ? M is locally symmetric,

or some finite cover is iso-

metrically a product; [2],

[12]

K ≥ 0 ⇐= There are simply con-

nected, irreducible M

not homeomorphic to a

symmetric space; [27]

K ≤ −1 M is locally symmetric;

[20], Corollary 2 (partial

result)

=⇒

K ≥ −1 M is hyperbolic un-

der curvature pinching;

Corollary 1 (partial re-

sult)

=⇒

K ≤ 1 Non-symmetric examples

exist; [26]

M is symmetric; [26]

K ≥ 1 Non-symmetric examples

exist; [26]

?

The central direction for extending this work is in removing the curvature



50

pinching condition. Since parallel translation preserves the complex structure on

a Kähler manifold the 2-frame flow will not be ergodic. These known counterex-

amples to ergodic frame flow are excluded by requiring −1 < K < −1/4, leading

Brin to conjecture that strict 1/4-pinching implies that the frame flow is ergodic

([8], Conjecture 2.6). A positive answer to this conjecture, or any extended re-

sults for ergodicity of the 2-frame flow in negative curvature would extend the

results on rank-rigidity presented here correspondingly, using the same proof as

presented above.

Note, however, that in even dimension a result directly parallel to the odd-

dimensional result cannot be hoped for. There are negatively curved manifolds

with higher hyperbolic rank which are not hyperbolic; complex hyperbolic man-

ifolds are examples. One still hopes that hyperbolic rank-rigidity (in the sense

that higher rank implies the space is locally symmetric) could be true in even

dimensions under only the condition 0 < K ≤ −1, and the result here as well as

the extensive analogous results for the other rank-rigidity theorems seem to make

such a theorem more likely. However, such a result would call for a significantly

different method of proof from that presented here.
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53

[17] P. Eberlein and B. O’Neill. Visibility manifolds. Pacific Joural of Mathematics, 46:45–109,
1973.

[18] Patrick Eberlein. Geometry of nonpositively curved manifolds. Chicago Lectures in Math-
ematics. University of Chicago Press, Chicago, IL, 1996.

[19] Patrick Eberlein and Jens Heber. A differential geometric characterization of manifolds
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