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Abstract. This paper presents quantitative shrinking target results for rota-
tions and interval exchange transformations. To do this a quantitative version

of a unique ergodicity criterion of Boshernitzan is established.

1. Introduction

Let α ∈ [0, 1). The rotation Rα : [0, 1)→ [0, 1) by Rα(x) = x+ α mod 1 is one
of the most natural and best understood dynamical systems. For example, Herman
Weyl proved the following result on the asymptotic frequency with which an orbit
visits a fixed ball:

Theorem. Let α /∈ Q. Then for any ε > 0 and any a ∈ [0, 1) we have

lim
N→∞

∑N
i=1 χB(a,ε)(R

i
αx)

N2ε
= 1.

This paper concerns the following question: What if the ball’s radius is allowed
to shrink as i increases? The focus of this paper is on treating families of sequences
of radii {ri} simultaneously and obtaining explicit conditions on α under which
theorems like the above can be proved. The following is the main result of this
paper for rotations:

Theorem 1.1. There exists an explicit, full measure diophantine condition on
α /∈ Q so that if α satisfies this condition then for any sequence {ri} such that iri
is non-increasing and

∑∞
i=1 ri =∞, and for any a ∈ [0, 1) we have

(1) lim
N→∞

∑N
i=1 χB(a,ri)(R

i
αx)∑N

i=1 2ri
= 1

for almost every x.

If α is badly approximable (a measure zero, full Hausdorff dimension set) then
we can relax the condition on the radius sequences further:

Theorem 1.2. If α is badly approximable, {ri}∞i=1 is non-increasing, and
∑
ri =

∞, then for any a ∈ [0, 1)

lim
N→∞

∑N
i=1 χB(a,ri)(R

i
αx)∑N

i=1 2ri
= 1

for almost every x.
1
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The choice of the center of these balls a does not play any role in our proof. For
the sake of concreteness, outside of the statements of our theorems we will prove
all our results for a = 1

2 . The full measure set of x for which our theorems hold
does, of course, depend on a.

We note that Kurzweil showed that the conclusion of Theorem 1.2 can hold at
most for badly approximable α:

Theorem. (Kurzweil [12]) For any decreasing sequence of positive real numbers
{ri}∞i=1 with divergent sum there exists V ⊂ [0, 1), a full measure set of α, such that
for all α ∈ V we have

m
( ∞
∩
n=1

∞
∪
i
B(R−iα (x), ri)

)
= 1

for every x, where m denotes Lebesgue measure.

On the other hand,

m
( ∞
∩
n=1

∞
∪
i
B(R−iα (x), ri)

)
= 1

for every x and every decreasing sequence of positive real numbers {ri}∞i=1 with
divergent sum iff α is badly approximable.

Let us make the statements of Theorems 1.1 and 1.2 precise. We call a sequence
{ri} where iri is non-increasing and

∑
ri = ∞ a Khinchin sequence. Let [a1, ...]

be the continued fraction expansion of α. The number α is badly approximable if
lim sup
n→∞

an <∞. The diophantine condition in Theorem 1.1 is as follows:

• an < n
4
3 for all but finitely many n,

• lim
C→∞

lim sup
N→∞

1
N

(
N∑
i=1

log ai −
N∑

i:ai<C

log ai

)
= 0, and

•
∑

k:ak>k
1
2

log k

k
2
3
<∞.

Here, and throughout the paper,
∑N
i∈S means

∑
i∈S∩[0,N ].

The first condition is a standard full measure condition on α (see, e.g., [9, Thm
30]).

The second is a mild “non-divergence” condition. The α which satisfy it have
full measure, which can be seen as follows. Let µ be the Gauss measure on [0, 1)
and consider the L1(µ) functions γ(x) = log(b 1xc) – the logarithm of the first term
in the continued fraction expansion of x – and

γa(x) =

{
log(a) if b 1xc = a

0 else
.

Applying the Birkhoff Ergodic Theorem for the Gauss map, φ(x) = 1
x − b

1
xc to

γ(x) −
∑C−1
a=1 γa(x) and noting that ‖γ(x) −

∑C−1
a=1 γa(x)‖1 → 0 as C → ∞ gives

the result.

For the third condition, recall that m({α : aj(α) = k}) < 2
k2 (see, e.g., [9, p. 60])

so m({α : aj(α) ≥ k}) ≤ D
k for some constant D. Let fj(α) = log j

j2/3
χ{aj>j1/2}(α).

Then
∫
fjdm ≤ log j

j2/3
D
j1/2

. Letting g(α) =
∑∞
j=1 fj(α), since the integrals of the fj
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are summable,
∫
g(α)dm =

∑∞
j=1

∫
fj(α)dm <∞. Therefore g is finite for almost

all α, that is, our third condition holds for almost all α.

We will prove our results not just for rotations, but also for interval exchange
transformations (IETs; Definition 2.1) satisfying similar diophantine assumptions.
The statement of this more general theorem (Theorem 2.3) requires a few technical
definitions and so is delayed until Section 2. We mention D. Kim and S. Marmi [10],
S. Galatolo [8], L. Marchese [13], M. Boshernitzan and J. Chaika [4], M. Marmi,
S. Moussa and J-C. Yoccoz [14] where a variety of diophantine results for interval
exchanges and rotations are proven.

A key tool in extending our work to IETs is a quantitative version of Bosher-
nitzan’s criterion for unique ergodicity which may be of independent interest (see
Section 4 for terminology, historical discussion and proof). We call an interval
bounded by two adjacent discontinuities of Tn (counting 0 and 1 as discontinuities)
an n-block interval of T (see Definition A.3 in the Appendix).

Theorem 1.3. Let T be a minimal interval exchange transformation. Let eT (n)
denote the minimum measure of any n-block interval of T . Let c > 0. Assume
nj ∈ N have the following two properties:

(1)
nj+1

nj
> 2

(2) eT (nj) >
c
nj

for all j.

Let J be any ni-block interval of T . Then there exist constants C1, C2, q̂ > 0
depending only on c such that for any points x, x′ we have

1

ni+q̂+L

∣∣∣ni+q̂+L∑
j=1

χJ(T jx)− χJ(T jx′)
∣∣∣ < C1e

−C2L|J |

for all L ∈ N. |J | denotes the length of J .

Quantitative equidistribution results for interval exchanges have also been proven
by A. Zorich [18], G. Forni [7], and J. Athreya and G. Forni [1].

1.1. Related results in other settings.

Definition 1.4. Given a dynamical system (X,T, µ), a sequence of sets {Ci} is a
strong Borel Cantelli sequence for T if

lim
N→∞

∑N
i=1 χCi(T

ix)∑N
i=1 µ(Ci)

= 1

for almost every x.

This paper establishes that for almost every α, any sequence of balls B( 1
2 , ri) so

that {ri} is a Khinchin sequence is strong Borel Cantelli for Rα. If the rotation is
badly approximable we may relax the condition to allow ri just non-increasing and
with divergent sum.

This question has been considered in systems of high complexity. Philipp [16]
proved that for the Gauss map, or a β-shift with the smooth invariant measure any
sequence of intervals so that the sum of the measures diverge is strong Borel Cantelli.
Dolgopyat [6] proved an analogous result for Anosov diffeomorphisms. Chernov-
Kleinbock [5] proved a similar result for topological Markov chains with a Gibbs
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measure: cylinders satisfying a certain nesting condition and so that the sum of
their measures diverge are strong Borel Cantelli. To highlight the difference between
our low complexity setting and the high complexity situation we remark that for
every rotation α there is a sequence of sets {Ci} with each Ci ∈ {[0, 1], [ 14 ,

3
4 ]} which

is not strong Borel Cantelli.

1.2. Outline of paper. We prove our results following a proof of the strong law
of large numbers.

In Section 2, we prove Theorem 2.3, the generalization of Theorem 1.1 to IETs.
The first key step is Proposition 2.13, which we prove in Section 2.2. This Propo-
sition says that, in the presence of the diophantine assumption, a large part of
the sum in the numerator of equation (1) can be broken up into sums over dis-
joint ranges for i in such a way that the resulting quantities are approximately
independent.

Section 2.3 shows, via this approximate independence result, that Theorem 1.1
is true if we ignore those terms in the sum which are not part of these roughly
independent quantities. Then Section 2.4 treats the terms ignored in Section 2.3,
showing that their contribution is negligible and finishing the proof.

We then prove Theorem 1.2 in two parts. In Section 3.1 we treat radius sequences
{ri} where sup iri <∞. In Section 3.2 we treat the general case.

Section 4 proves the quantitative Boshernitzan criterion, Theorem 1.3, which is
used in the earlier sections.

There is an appendix that provides a treatment of the symbolic coding of an IET.
This is well-known material included for completeness, and to provide a reference
for notation and terminology used elsewhere in the paper.

1.3. Acknowledgments. J. Chaika would like to thank B. Fayad and D. Klein-
bock for encouraging me to pursue this question. We would like to thank J. Athreya,
M. Boshernitzan, A. Eskin, H. Masur, R. Vance and W. Veech for helpful conversa-
tions. J. Chaika was partially supported by NSF grants DMS-1004372, DMS-135500
and DMS-1452762, a Sloan fellowship and a Warnock chair. We are also deeply
indebted to anonymous referees for many helpful suggestions on earlier versions of
the paper.

2. Proof of Theorem 1.1

2.1. Setup and an outline of the proof. In this section we introduce notation
and terminology necessary to state and prove Theorem 2.3 – our extension of The-
orem 1.1 to interval exchange transformations. Our first task is to introduce an
analogue of the continued fraction expansion used to state Theorem 1.1. We also
give a short outline of the proof of Theorem 2.3 and record a few lemmas for future
use.

Definition 2.1. Given a vector L = (l1, l2, ..., ld) where li ≥ 0 and
∑d
i=1 li = 1, we

obtain d sub-intervals of [0, 1):

I1 = [0, l1), I2 = [l1, l1 + l2), ..., Id = [l1 + ...+ ld−1, 1).

Given a permutation π on the set {1, 2, ..., d}, we obtain a d-Interval Exchange
Transformation (IET) T : [0, 1)→ [0, 1) which exchanges the intervals Ii according
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to π. That is, if x ∈ Ij then

T (x) = x−
∑
k<j

lk +
∑

π(k′)<π(j)

lk′ .

Throughout the paper, we work with the Lebesgue measure on [0, 1), which is
invariant under any IET. The Lebesgue measure of a set A will be denoted by
m(A). For intervals, we will write |J | for m(J).

The points D = {
∑r
i=1 li}

d−1
r=1 are the discontinuities of T . The discontinuities

of Tn are
⋃n−1
i=0 T

−iD. Generalizing the behavior of irrational circle rotations to
IETs is the Keane condition:

Definition 2.2. T satisfies the Keane condition if the orbits of all its discontinu-
ities are infinite and disjoint.

This full measure condition will be assumed for Theorems 2.3 and 3.1.

Given an IET T , let eT : N → R be defined as follows: eT (n) is the minimum
distance between two discontinuities of Tn. If two discontinuities orbit into each
other then eT (n) is defined to be 0. Since T−1({0, 1}) is contained in the set of
discontinuities we have that eT (n) is at most (i.e. ≤1) the measure of the smallest
(n−1)-block interval (see Appendix A). Notice that eT is a non-increasing function.

Fix ξ > 0. We define an increasing sequence of integers ni(ξ) inductively as

follows. Let n0(ξ) = 1 and let ni+1 = min{2k > ni : eT (2ni+1) > ξ
ni+1
}. Let

ai(ξ) = ni
ni−1

. Below, we will suppress ξ in our notation.

Theorem 2.3. Let T be an IET satisfying the Keane condition so that for every
ε > 0 there exists ξ > 0, C so that

(1) ai ≤ i
4
3 for all but finitely many i,

(2) lim supN→∞
1
N

(∑N
i=1 log ai −

∑N
ai<C

log ai

)
< ε, and

(3)
∑
k:ak>k

1
2

log k

k
2
3
<∞.

Then for any Khinchin sequence {ri} and any a ∈ [0, 1) we have

(2) lim
N→∞

∑N
j=1 χB(a,rj)(T

jx)∑N
j=1 2rj

= 1

for almost every x.

Remark 2.4. Note that for any ξ < 1, for all rotations Rα, if qi is the denominator
of the ith convergent to α, then eRα(qi − 1) > ξ

2qi
(see, e.g., [9, §6]). Since qi+1 =

aiqi + qi−1 where α = [a1, a2, . . .] is the continued fraction expansion of α, our
definition of the ai for Theorems 2.3 and 3.1 (the IET version of Theorem 1.2) is
inspired by the partial fraction expression for rotations.

To see how Theorems 1.1 and 1.2, stated as they are for rotations, follow from
Theorems 2.3 and 3.1 stated for IETs, it is a short exercise to verify that if 2k <
qj ≤ 2k+1 then 2k−1 satisfies the inequality required to be an ni with ξ ≤ 1

4 .
Therefore, when addressed with the machinery of Theorems 2.3 and 3.1, new ni

1Throughout the paper, when we write ‘at most’ we mean ≤. We avoid using this term when
a distinction between < and ≤ is important for our arguments.
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appear whenever a new qj is reached (except when aj = 1, in which case we may
have to wait for qj+1). The ai for the IET machinery will be bounded above by a
small fixed multiple of the aj for the continued fraction expansion. Theorems 2.3
and 3.1 still work after accounting for this multiple, proving Theorems 1.1 and 1.2.

The proof of Theorem 2.3 proceeds as follows. First, we split up the sum in the
numerator of equation (2) into sums over disjoint sets of indices. Specifically, let

gi(x) =

2ni−1∑
j=ni

χB( 1
2 ,rj)

(T jx).

These sums account for much, but not all, of the numerator in equation (2). In
Sections 2.2 and 2.3 we show that Theorem 2.3 holds if we ignore terms not included
in the gi:

(3) lim
N→∞

N∑
i=1

gi(x)

N∑
i=1

∫
gi

= 1.

Remark 2.5. Note that throughout the paper, all integrals are taken with respect
to the Lebesgue measure on [0, 1].

We prove equation (3) by showing that the gi satisfy the following version of
the strong law of large numbers. Its (standard) proof is included in Section 2.3 for
completeness.

Proposition 2.6. Let Hi : [0, 1]→ R≥0 so that for all i there exists C1, C2:

(H1) ‖Hi‖∞ < C1

(H2)
∑∞
i=1

∫
Hi = +∞

(H3)
∑∞
j=i+1

∣∣∫ Hj(x)Hi(x)−
∫
Hi(x)

∫
Hj(x)

∣∣ < C2‖Hi−1(x)‖1.

Then

lim
N→∞

∑N
i=1Hi(x)∑N
i=1

∫
Hi(x)

= 1

for a.e. x.

Property (H3) should be thought of as approximate independence of the Hi.
Verifying it for gi is the main work; this is shown in Section 2.2. This approximate
independence for gi comes via Lemma 2.14 from an effective equidistribution result
on T (Theorem 1.3) and approximate T -invariance of the gi (Lemma 2.15).

Having established equation (3), we complete the proof in Section 2.4 by showing
that those times not accounted for by the gi contribute negligibly to equation (2).
Let

βi(x) =

ni+1−1∑
j=2ni

χB( 1
2 ,rj)

(T jx).

We will prove that, for almost every x∑
i<N

βi(x) = o

(
nN∑
i=1

χB( 1
2 ,ri)

(T ix)

)
.
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The βi depend strongly on the ai, and hence on the parameter ξ. When we need
to make this dependence explicit (for example in the proof of Lemma 2.29), we will
write βi(x, ξ) for βi(x).

Before proceeding to the main elements of the proof, we collect a few Lemmas
we will need throughout. The first is a straightforward consequence of the Khinchin
condition.

Lemma 2.7. For any n ≥ m,

2n−1∑
i=n

2ri ≤
2m−1∑
i=m

2ri.

In particular, for all i ≥ j,
‖gi‖1 ≤ ‖gj‖1.

We conclude this section with a result used to control ‖gi‖∞ which we will
frequently quote. Since the {ri} are a Khinchin sequence, this Lemma proves that
the gi satisfy property (H1) from Proposition 2.6.

Lemma 2.8. gi(x) ≤ 1 + 2ni
ξ 2rni for all i and x.

The proof relies on:

Lemma 2.9. (Boshernitzan [2, Lemma 4.4]) If T satisfies the Keane condition,
then for any interval J with measure ≤ eT (n + 1) there exist integers p ≤ 0 ≤ q
(which depend on J) such that

(1) q − p ≥ n
(2) T i acts continuously on J for p ≤ i ≤ q
(3) T i(J) ∩ T j(J) = ∅ for p ≤ i < j ≤ q.

Remark 2.10. Boshernitzan proves a somewhat stronger result. One can remove the
Keane condition assumption and get the same result as long as J does not contain
any saddle connections of T (points on the orbit of two distinct discontinuities).
The Keane condition implies that there are no saddle connections.

Remark 2.11. Note that condition (3) implies that T i(J) ∩ T j(J) = ∅ for any
interval with measure ≤ eT (n+ 1) and 0 < |i− j| ≤ n.

Proof of Lemma 2.8. Let J be any interval. By Remark 2.11, if T jx, T j+rx ∈ J ,
then |J | > eT (r + 1).

Note that for all x,

gi(x) =

2ni−1∑
j=ni

χB( 1
2 ,rj)

(T jx) ≤
2ni−1∑
j=ni

χB( 1
2 ,rni )

(T jx).

Partition B( 1
2 , rni) into subintervals Jk with measure ≤ eT (ni + 1), using as few

intervals as possible. There are d 2rni
eT (ni+1)e such intervals. Since the measure of Jk

is ≤ eT (ni + 1), by Lemma 2.9, if ni ≤ j1 < j2 ≤ 2ni − 1, then at most one of T j1x
and T j2x can lie in Jk. Hence

gi(x) ≤
⌈

2rni
eT (ni + 1)

⌉
≤ 2rni
eT (ni + 1)

+ 1 ≤ 2rni
eT (2ni)

+ 1 ≤ 2ni2rni
ξ

+ 1.

�
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Remark 2.12. Note that the proof of Lemma 2.8 uses only that we have a lower
bound on eT (2ni); the Khinchin condition does not play a role. Its argument will
also extend to the setting of Proposition 3.2, and we will use this argument in the
proof of Lemma 2.26, using a different lower bound on eT .

2.2. Estimate on
∫

gi(x)gj(x). The goal of this section is to establish property
(H3) of Proposition 2.6 for the gi.

Proposition 2.13. There exists C so that for all j,

∞∑
i=j+1

∣∣∣∣∫ gigj −
∫
gi

∫
gj

∣∣∣∣ < C‖gj−1‖1,

where C depends only on ξ.

This proposition asserts ‘approximate independence’ of gi and gj as i becomes
much larger than j. To prove this, when i is sufficiently larger than j, we L1-
approximate gj by a function fi,j which is nearly independent from gi. This function
will be built using a general result, Lemma 2.17, and a result using the dynamics of
T , Lemma 2.18, and it will be constant on certain intervals of [0, 1) closely related
to the dynamics of T . Our first result shows how we can use a property of gi –
approximate T -invariance, established in Lemma 2.15 – to prove that gi is nearly
independent from a function like fi,j .

Lemma 2.14. Assume h is a non-negative function satisfying ‖h − h ◦ T i‖1 < δ
for i ≤ n and that J is an interval such that∣∣n|J | − |{0 < i ≤ n : T i(x) ∈ J}|

∣∣ < nδ′.

Then∣∣∣∣∫ hχJ − |J |
∫
h

∣∣∣∣ ≤ δ′(∫ h

)
+

1

n

n∑
i=1

∫
J

|h(x)− h ◦ T i(x)|dx ≤ δ′
(∫

h

)
+ δ.

Proof. Let ei(x) = h(x)− h ◦ T i(x). Then ‖ei‖1 < δ for i ≤ n. We have∫
h(x)χJ(x)dx =

∫
1

n

n∑
i=1

(h ◦ T i(x) + ei(x))χJ(x)dx

≤
∫

1

n

n∑
i=1

h ◦ T i(x)χJ(x)dx+
1

n

n∑
i=1

∫
J

|ei(x)|dx

=

∫
h(x)

1

n

∣∣{1 ≤ i ≤ n : T−i(x) ∈ J}
∣∣ dx+

1

n

n∑
i=1

∫
J

|ei(x)|dx

≤ (|J |+ δ′)

(∫
h(x)dx

)
+

1

n

n∑
i=1

∫
J

|ei(x)|dx.

A similar calculation bounds
∫
hχJ − |J |

∫
h below. The result follows from this

and the bound on ‖ei‖1. �

We want to apply Lemma 2.14 when h = gi. To obtain good bounds, the first
step is to establish the approximate T -invariance of gi.
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Lemma 2.15. There exists C so that for every j

∞∑
k=j+1

max{‖gk − gk ◦ T s‖1 : 0 ≤ s < n k+j
2
} < C‖gj−1‖1.

Proof. For any M < N and 0 ≤ s < N −M ,

N∑
i=M

χT−iB( 1
2 ,ri)

(x)−
N∑
i=M

χT−iB( 1
2 ,ri)

(T sx)

=

N∑
i=M

χT−iB( 1
2 ,ri)

(x)−
N∑
i=M

χT−i−sB( 1
2 ,ri)

(x)

=

N∑
i=M

χT−iB( 1
2 ,ri)

(x)−
N+s∑

j=M+s

χT−jB( 1
2 ,rj−s)

(x).

We now split the sums above into three parts – the first s terms of the first sum,
the last s terms of the second sum, and the middle terms where the indices in the
two sums overlap. After converting the last s terms back to the index i, this gives

N∑
i=M

χT−iB( 1
2 ,ri)

(x)−
N∑
i=M

χT−iB( 1
2 ,ri)

(T sx)

=

M+s−1∑
i=M

χT−iB( 1
2 ,ri)

(x)−
N∑

i=N−s+1

χT−i−sB( 1
2 ,ri)

(x)

+

N∑
i=M+s

χT−iB( 1
2 ,ri)

(x)− χT−iB( 1
2 ,ri−s)

(x).

Since we assume that ri is non-increasing, the L1 norms of the first two terms are
each bounded above by 2srM . The L1 norm of the third term can be bounded using
a telescoping sum argument. All but 2s terms cancel, giving a maximum total L1

norm of 4srM .

As gk − gk ◦ T s has the above form with M = nk and N = 2nk − 1, we prove
the desired bound by bounding 8srM appropriately, then summing over k ≥ j + 1.
By definition, s ≤ nb k+j2 c

. Therefore, to prove the Lemma, it suffices to bound∑∞
k=j+1 8nb k+j2 c

rnk . By construction, ni+1 ≥ 2ni so nk ≥ 2
k−j
2 nb k+j2 c

and hence

nb k+j2 c
≤ nk√

2
k−j . Therefore,

∞∑
k=j+1

8nb k+j2 c
rnk ≤ 8

∞∑
k=j+1

1
√

2
k−j nkrnk .

Since nkrnk is non-increasing, for some constant C we have

8

∞∑
k=j+1

1
√

2
k−j nkrnk ≤ 8njrnj

∞∑
k=j+1

1
√

2
k−j ≤ C‖gj−1‖1.

�

Essentially the same proof also demonstrates the following:
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Lemma 2.16. There exists C so that for every j
∞∑

k=j+1

max{‖βk − βk ◦ T s‖1 : 0 ≤ s < n k+j
2
} < C‖gj‖1.

Theorem 1.3 establishes convergence of orbit sums for functions that are constant
on intervals of continuity of TM for appropriately chosen M . To use this with the
gi, we will need that some such function is close to gi. The next two lemmas show
this.

Given a finite set S ⊂ [0, 1] let PS be the finite partition of [0, 1] defined by
connected components of [0, 1] \ S. As a convention for this partition, we include
each point in S itself in the interval to its right (except, of course, when 1 ∈ S);
this particular choice is not important in our arguments.

Lemma 2.17. If S is ε-dense then there exists a function h which is constant on
each element of PS and whose L1 difference from gi is at most 2niε. Moreover, h
can be chosen so that ‖h‖∞ ≤ ‖gi‖∞, ‖h‖1 ≤ ‖gi‖1, and h can be expressed as the
sum of ni characteristic functions for intervals.

Proof. For any interval J , there exists some function φ which is constant on the
elements of PS and such that ‖χJ − φ‖1 < 2ε and ‖φ‖∞ ≤ ‖χJ‖∞. Specifically, for
each I ∈ PS , if I ⊂ J , set φ = 1 on I, otherwise set φ = 0 on I. Note that φ is the
characteristic function for an interval. The lemma follows because gi is the sum of
ni characteristic functions of intervals. �

Let Sk be the set of discontinuities of T k. Recall that d is the number of intervals
of our IET and that eT (ni) >

ξ
2ni

.

Lemma 2.18. Sni+d(2−log2(ξ))
is 1

ni
-dense.

The lemma follows from the following result, which is adapted to our situation.
This result uses the first return map. Recall that if G : X → X is a dynamical
system and A ⊂ X then the first return map of G to A is G|A : A → A by

G|A(x) = Gmin{`>0:G`x∈A}(x). The numbers min{` > 0 : G`x ∈ A} are called
return times. Recall that the first return map of a d-IET to an interval J bounded

by adjacent discontinuities of Tn is a d̂-IET for d̂ ≤ d and the return time is constant
on each interval.

Sublemma 2.19. Let J be an m-block interval of the d-IET T . Then at most
d(2− log2(ξ)) of the ni satisfy 1

|J| ≤ ni ≤ m.

Proof. We assume 1
|J| < m, as otherwise the statement is trivial.

Step 1: It suffices to show that there exist integers k1 ≤ · · · ≤ kd′ with d′ ≤ d such
that k1 <

1
|J| and kd′−1 < m ≤ kd′ and such that if kj < i < kj+1 then eT (i) < 1

kj+1
.

To see this, say nl, . . . , nl+c lie in [kj , kj+1]. By the defining condition on the nl
and the condition above, we have ξ

2nl
< 1

kj+1
. Since the ni+1

ni
≥ 2, we have

2cnl ≤ nl+c ≤ kj+1 <
2

ξ
nl.

Hence c < 1 − log2 ξ and so at most 2 − log2 ξ of the ni lie in [kj , kj+1]. Since at
most d intervals of this form cover [ 1

|J| ,m], the result follows.
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Step 2: Defining a sequence. Consider the sequence of first return times k1 ≤
· · · ≤ kd′ for the first return map T |J . We note that the Keane condition guarantees
that there must be a return time ≥ m. To see this, recall that the Keane condition
implies minimality, and then examine a point in the interior of J which takes the
minimum time to hit a discontinuity of T (besides a discontinuity at an endpoint
of J). This must occur before returning to J (by the choice of the point) but also
at time ≥ m (as J is an m-block interval).

Step 3: The sequence we defined satisfies the sufficient condition in Step 1. Note
that J = [T−Kδ, T−Lδ′) where δ, δ′ are either 0, 1 or discontinuities of T . Moreover,
for any discontiuity δ′′, T−rδ′′ ∈ Int(J) (the interior of J) implies r ≥ m since J
is an m-block. Write Ii for the interval with return time ki.

It is clear that the smallest return time, k1, satisfies k1 <
1
|J| . Since k1 < m, by

the remark above, the boundary point of I1 in Int(J) must be in the orbit of δ, δ′,
because T i acts continuously on J for 0 ≤ i < m. Therefore, it is either T−k1−Kδ
or T−k1−L(δ′). Without loss of generality, let us assume it is T−k1−Kδ. Pushing
J forward by TK , we see that T k1+KJ intersects TKJ . Let K1 be the subinterval
of TKJ which returns to J after k1 iterates of T and K0 the other subinterval.
Note that K0 is an k1-block, and so eT (k1) is bounded above by its length. Since
T−KK0 has not returned to J after k1 iterates, the first return time for any of its
points is k2. As above, this implies that |K0| < 1

k2
. Therefore eT (k1) < 1

k2
.

The argument above may be continued inductively, considering always the points
which have not yet returned to J , as long as ki < m. Therefore we have constructed
the desired integers ki and the sublemma is proved. �

Proof of Lemma 2.18. Let m = ni+d(2−log2(ξ))
and suppose, towards a contradic-

tion, that Sm is not 1
ni

-dense and so there exists an m-block interval J with

|J | ≥ 1
ni

. Then 1
|J| ≤ ni < m. Applying Sublemma 2.19, we conclude that

the set G := {j : 1
|J| ≤ nj ≤ m} has at most d(2 − log2(ξ)) elements. Since the

ni are increasing, the set G consists of consecutive integers. Since i ∈ G, we have
i − 1 + d(2 − log2(ξ)) /∈ G, i.e., ni−1+d(2−log2(ξ))

> m, which contradicts the fact
that the ni are increasing combined with the definition of m. �

For use in Section 3.1, we record an analogue of Lemma 2.18 which holds under
the ‘badly approximable’ assumption of Theorems 1.2 and 3.1.

Lemma 2.20. If there exists some σ > 0 such that eT (n) > σ
n for all n, then there

exists some K > 0 such that {T ix}ni=1 is K
n -dense for all x, n.

Proof. By choosing ξ < σ
2 , we may choose ni = 2i. By the previous lemma

{x, ..., Tnx} is 2−[m−d(2−log2(ξ))]-dense where m = blog2(n)c. The lemma fol-
lows. �

We now prove Proposition 2.13.
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Proof of Proposition 2.13. Let u = max({j} ∪ {i : ni <
1
rnj
}). Let v = d(2 −

log2(ξ)) + q̂ where q̂ is provided by Theorem 1.3. We divide up our sum as follows:

∞∑
i=j+1

∣∣∣ ∫ gigj−
∫
gj

∫
gi

∣∣∣
=
∑
j<i≤u

∣∣∣ ∫ gigj −
∫
gj

∫
gi

∣∣∣+
∑

u<i≤u+4v

∣∣∣ ∫ gigj −
∫
gi

∫
gj

∣∣∣
+

∑
i>u+4v

∣∣∣ ∫ gigj −
∫
gj

∫
gi

∣∣∣.
Step 1: We estimate the first term, in the case j < u (otherwise there is no

contribution from this term). By Lemma 2.9, T s+`x /∈ B(T `x, r`) for all s so that

eT (s+1) ≥ 2r`. By definition of the ni and the choice of u, eT (2nu) > ξ
2nu

> ξ
2rnj .

Then for any ` ≥ nj , there are at most 1 + 4rnj/(
ξ
2rnj ) = 1 + 8

ξ disjoint intervals

of size ξ
2nu

intersecting B(T `x, 2r`). It follows that if ` ≥ nj then

(4)
∣∣{s < 2nu : T sx ∈ B(T `x, 2r`)}

∣∣ ≤ 1 +
8

ξ
.

For any s ∈ [ni, 2ni) and ` ∈ [nj , 2nj), s > `, rs < rl and therefore B(T sx, rs) ∩
B(T `x, r`) 6= ∅ only if T sx ∈ B(T `x, 2r`). Therefore,

(5)
∑
j<i≤u

∫
gigj ≤

(
1 +

8

ξ

)
‖gj‖1 ≤

(
1 +

8

ξ

)
‖gj−1‖1

using Lemma 2.7.

Now we bound
∑
j<i≤u

∫
gi
∫
gj above in terms of ‖gj−1‖1. Observe that as

ni+1 ≥ 2ni and under the assumption that j < u, u − j ≤ log2( 1
njrnj

). We can

straight-forwardly bound ‖gj‖1 ≤ 2njrnj . This implies that

log2

(
2

‖gj‖1

)
≥ log2

(
1

njrnj

)
≥ u− j.

Therefore, using Lemma 2.7,∑
j<i≤u

‖gj‖1‖gi‖1 ≤ ‖gj‖1
∑
j<i≤u

‖gj‖1

≤ ‖gj‖1 log2

(
2

‖gj‖1

)
‖gj‖1

≤ 2‖gj‖1 ≤ 2‖gj−1‖1.(6)

Combining (5) and (6), by the triangle inequality we have∑
j<i≤u

∣∣∣ ∫ gigj −
∫
gj

∫
gi

∣∣∣ ≤ (2 + 1 +
8

ξ
)‖gj−1‖.

Step 2: We estimate the second term. By Lemma 2.8 we have that there exists
D independent of i, j with ‖

∑
u<i≤u+4v gi(x)‖∞ < D. We can then apply the
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triangle and Hölder inequalities as follows:∑
u<i≤u+4v

∣∣∣ ∫ gigj −
∫
gi

∫
gj

∣∣∣ ≤ ∑
u<i≤u+4v

∣∣∣ ∫ gigj |+
∣∣∣ ∫ gi

∫
gj

∣∣∣
≤

∑
u<i≤u+4v

‖gi‖∞‖gj‖1 + ‖gi‖∞‖gj‖1

≤ 2‖gj‖1
∑

u<i≤u+4v

‖gi‖∞ < 2D‖gj‖1 ≤ 2D‖gj−1‖1,

as desired, again using Lemma 2.7 at the last step.

Step 3: We estimate the third term. To do this we will use Lemma 2.14 to
show that gi is nearly independent from fi,j , a function that is close to gj and is
constructed with the help of Lemma 2.18. We will then show that gi and gj are
nearly independent, as desired.

For fixed i, j with i > u+ 4v, let b = 3u+i
4 . Note that as i > 4v+ u in these sum

terms, b − v > u. Let Si,j be the set of discontinuities of Tnb ; in the terminology
of Lemma 2.18, Si,j = Snb . By Lemma 2.18, Si,j = Snb−v+q̂+d(2−log2 ξ)

is 1
nb−v+q̂

-

dense, and hence 1
nb−v

-dense. As nk+1 ≥ 2nk, we have nb−v ≥ nu+12b−v−u−1 =

nu+12
i−u
4 −v−1. Then

1

nb−v
≤ 1

nu+1
2−

i−u
4 +v+1

for all i > u+ 4v.

Applying Lemma 2.17 to gj using the 1
nb−v

-dense set Si,j , we obtain a function

fi,j which is constant on each element of the partition by Si,j and such that

(7) ‖fi,j − gj‖1 ≤ 2nj
1

nu+1
2−

i−u
4 +v+1 and ‖fi,j‖∞ ≤ ‖gj‖∞.

In addition, fi,j =
∑R
l=1 αlχJl where Jl are disjoint intervals from the partition by

Si,j and αl ≥ 0.

We have the following lower bound on ‖gj−1‖1: ‖gj−1‖1 ≥ 2nj−1r2nj−1 ≥ njrnj
using the Khinchin condition. By our choice of u, nu+1 ≥ 1

rnj
, so ‖gj−1‖1 ≥ nj 1

nu+1
.

From this and (7) we obtain

(8) ‖fi,j − gj‖1 ≤ K ′2−
i−u
4 ‖gj−1‖1

for a constant K ′ independent of j.

We apply Theorem 1.3, to an arbitrary nb-block interval J as follows. Let L =
i−u
4 − q̂; then nb+q̂+L = n i+u

2
. Since i > u + 4v in this step, using the definition

of v we see that L > 0 as necessary for Theorem 1.3. Then applying the theorem
(with b here in the role of Theorem 1.3’s i), we obtain for any x, x′ and any such J :

∣∣∣ n i+u2∑
j=1

χJ(T jx)− χJ(T jx′)
∣∣∣ < n i+u

2
C1e

−C2(
i−u
4 −q̂)|J | ≤ n i+u

2
C ′1e

−C2
i−u
4 |J |

with constants C1 and C2 as in Theorem 1.3 and C ′1 = C1e
C2q̂.
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Since this bound holds for all x′, it holds when we replace the x′ term with its
average over all x′. We obtain∣∣∣∣∣{0 < k ≤ n i+u

2
: T kx ∈ J}

∣∣− n i+u
2
|J |
∣∣∣ < n i+u

2
C ′1e

−C2
i−u
4 |J |

for positive constants C ′1 and C2 which are independent of j.

Now consider∣∣∣∣∫ gifi,j −
∫
gi

∫
fi,j

∣∣∣∣ =

∣∣∣∣∣
R∑
l=1

αl

(∫
giχJl − |Jl|

∫
gi

)∣∣∣∣∣
≤

R∑
l=1

αl

∣∣∣∣∫ giχJl − |Jl|
∫
gi

∣∣∣∣ .
Applying Lemma 2.14 with h = gi, n = n i+u

2
and δ′ = C ′1e

−C2
i−u
4 |Jl|, we obtain

∣∣∣∣∫ gifi,j −
∫
gi

∫
fi,j

∣∣∣∣ ≤ R∑
l=1

αl

C ′1e−C2
i−u
4 |Jl| · ‖gi‖1 +

1

n i+u
2

n i+u
2∑

k=1

∫
Jl

|gi − gi ◦ T k|dx


= ‖fi,j‖1C ′1e−C2

i−u
4 ‖gj−1‖1 +

1

n i+u
2

n i+u
2∑

k=1

R∑
l=1

αl

∫
Jl

|gi − gi ◦ T k|dx

≤ ‖fi,j‖1C ′1e−C2
i−u
4 ‖gj−1‖1 + ‖fi,j‖∞

1

n i+u
2

n i+u
2∑

k=1

‖gi − gi ◦ T k‖1

≤ D′C ′1e−C2
i−u
4 ‖gj−1‖1 +D′ci,j(9)

because ‖fi,j‖∞ ≤ ‖gj‖∞ ≤ D′ independent of j by Lemma 2.8, and the Jl are
disjoint, and where

ci,j = max
{
‖gi − gi ◦ T k‖1 : 0 ≤ k ≤ n i+u

2

}
.

We have also used that Lemma 2.7 implies ‖gi‖1 ≤ ‖gj−1‖1.

By Lemma 2.15, ∑
i>j

ci,j ≤ D‖gj−1‖1

for a constant D independent of j. Combining this and equation (9), we get

(10)
∑

i>u+4v

∣∣∣∣∫ gifi,j −
∫
gi

∫
fi,j

∣∣∣∣ < D̂‖gj−1‖1

for some D̂ > 0 independent of j.
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Then we have∣∣∣ ∫ gigj −
∫
gi

∫
gj

∣∣∣
≤
∣∣∣ ∫ gigj −

∫
gifi,j

∣∣∣+
∣∣∣ ∫ gifi,j −

∫
gi

∫
fi,j

∣∣∣+
∣∣∣ ∫ gi

∫
fi,j −

∫
gi

∫
gj

∣∣∣
≤ ‖gi‖∞‖gj − fi,j‖1 +

∣∣∣ ∫ gifi,j −
∫
gi

∫
fi,j

∣∣∣+ ‖gi‖∞‖fi,j − gj‖1

≤ K ′′2−
i−u
4 ‖gj−1‖1 +

∣∣∣ ∫ gifi,j −
∫
gi

∫
fi,j

∣∣∣+K ′′2−
i−u
4 ‖gj−1‖1

for some K ′′ independent of j. The last inequality uses: Lemma 2.8 to bound ‖gi‖∞
and (8) to bound ‖fi,j − gj‖1. Summing the above expression over the relevant i
and using equation (10), we get∑

i>u+4v

∣∣∣∣∫ gigj −
∫
gi

∫
gj

∣∣∣∣ < D′′‖gj−1‖1

for a constant D′′ independent of j, as desired. This completes the proof. �

2.3. Abstract setting: Proof of Proposition 2.6. We prove Proposition 2.6
below. First, we introduce some notation.

Let Hi be as in Proposition 2.6. Recall that these nonnegative random variables
satisfy the following criteria for all i:

(H1) ‖Hi‖∞ < C1

(H2)
∑∞
i=1

∫
Hi =∞

(H3)
∑∞
j=i+1 |

∫
HiHj −

∫
Hi

∫
Hj | < C2‖Hi−1‖1.

From (H1) it is immediate that ‖Hi‖1 < C1.

Let Fi = Hi −
∫
Hi. Observe that Fi satisfies the following for all i:

(F1)
∫
Fi = 0

(F2) ‖Fi‖∞ < ‖Hi‖∞ < C1

(F3)
∑∞
j=i+1 |

∫
FiFj | < C2‖Hi−1‖1

Again, it is easy to see that ‖Fi‖1 < 2‖Hi‖1.

Let m0 = 0 and define mk inductively by mk+1 = min{i :
∑i
j=mk+1 ‖Hj‖1 ≥ 1}.

Condition (H2) guarantees the existence of mk for all k. From this definition, and
from the fact, noted above, that ‖Hi‖1 < C1 for all i, we have that

(11) 1 ≤
mk+1∑
i=mk+1

‖Hi‖1 < C1 + 1.

For the proof of Proposition 2.6 we use the following two classical results:

Lemma 2.21. (Chebyshev’s inequality) Let R be a random variable with
∫
Rdµ = 0

and finite variance. Then µ({ω : R(ω) > c}) ≤
∫
R2dµ
c2 .

Lemma 2.22. (Borel-Cantelli) If A1, ... are m-measurable sets and
∑∞
i=1m(Ai) <

∞ then m({x : x ∈ Ai for infinitely many i}) = 0.
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We will prove that

(12) lim
N→∞

∑N
i=1 Fi(x)∑N
i=1

∫
Hi

= 0

for a.e. x, which implies Proposition 2.6. Indeed (12) implies that

lim
N→∞

∑N
i=1Hi(x)∑N
i=1

∫
Hi

= lim
N→∞

∑N
i=1 Fi(x)∑N
i=1

∫
Hi

+

∑N
i=1

∫
Hi∑N

i=1

∫
Hi

= 1.

Our proof is in two steps. First, we prove that (12) holds along the subsequence
{mN2}N∈N.

Lemma 2.23.

lim
N→∞

∑mN2

i=1 Fi(x)

N2
= 0

for a.e. x.

Note that by (11),
∑mN2

i=1 ‖Hi‖1 ≥ N2, so Lemma 2.23 implies Proposition 2.6
for this subsequence.

Proof. Consider, for any M , the mean-zero random variable
∑mM
i=1 Fi(x). We want

to bound its second moment.∫ (mM∑
i=1

Fi(x)

)2

dx =

∫ mM∑
i=1

Fi(x)2 + 2
∑

1≤i<j≤mM

Fi(x)Fj(x)

 dx

First,

mM∑
i=1

∫
Fi(x)2dx ≤

mM∑
i=1

‖Fi‖∞‖Fi‖1

< C1

mM∑
i=1

‖Fi‖1 < 2C1

mM∑
i=1

‖Hi‖1 < 2C1(C1 + 1)M.

using the Hölder inequality, our bounds on ‖Fi‖∗, and equation (11).

Second,∣∣∣2 ∑
1≤i<j≤mM

∫
Fi(x)Fj(x)dx

∣∣∣ ≤ 2

mM−1∑
i=1

∣∣∣ mM∑
j=i+1

∫
Fi(x)Fj(x)dx

∣∣∣
≤ 2

mM∑
i=1

C2‖Hi−1‖1 < 2C2(C1 + 1)M

using property (F3) and equation (11).

We conclude that
∫

(
∑mM
i=1 Fi(x))2dx < C̃M for some positive constant C̃ and

all M .

Now, by Chebyshev, for each N and any δ > 0,

m
({
x :
∣∣∣mN2∑
i=1

Fi(x)
∣∣∣ > δN2

})
<
C̃N2

δ2N4
=

C̃

δ2N2
.
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Let AN = {x : |
∑mN2

i=1 Fi(x)| > δN2}. By the above, this sequence of sets has
summable measure, so by Borel-Cantelli, for almost all x,

lim sup
N→∞

|
∑mN2

i=1 Fi(x)|
N2

= 0

proving the lemma. �

We are now ready to prove Proposition 2.6.

Proof of Proposition 2.6. We want to show

lim
r→∞

∑r
i=1 Fi(x)∑r
i=1

∫
Hi

= 0.

Choose N so that mN2 ≤ r < m(N+1)2 . Again using (11),∣∣∣∣∑r
i=1 Fi(x)∑r
i=1

∫
Hi

∣∣∣∣ ≤ ∣∣∣∣∑mN2

i=1 Fi(x)

N2

∣∣∣∣+

∣∣∣∣∣
∑r
i=mN2+1 Fi(x)

N2

∣∣∣∣∣ .
Therefore, using Lemma 2.23, it is sufficient to prove that for almost every x,

lim
N→∞

max
mN2<r<m(N+1)2

∑r
i=mN2+1 Fi(x)

N2
= 0.

Recalling the definition of Fi, we need to consider∑r
i=mN2+1Hi(x)− ‖Hi‖1

N2
.

The proof follows an argument similar to Lemma 2.23. For any L < m(N+1)2 ,

using the bounds on ‖Fi‖∗ and equation (11), one has
∫

(
∑L
i=mN2+1 Fi(x))2dx <

C̃N . Chebyshev’s inequality implies

m
({
x :
∣∣∣ L∑
i=mN2+1

Fi(x)
∣∣∣ > δN2

})
<

C̃N

δ2N4
.

This is summable, so applying Borel-Cantelli as before, the set of x which do not
have the desired convergence property has measure zero.

�

Remark 2.24. Note that condition (H3) can be replaced by the following slightly
weaker condition, which is all that is used in the proof of Proposition 2.6:

(H3′): There exists some constant C2 such that for all N ,∣∣∣∣∣∣
N−1∑
i=1

N∑
j=i+1

∫
HiHj −

∫
Hi

∫
Hj

∣∣∣∣∣∣ < C2

N−1∑
i=1

‖Hi‖1.

When we use Proposition 2.6 in the proof of Proposition 3.2, we will use (H3′) in
place of (H3).



18 J. CHAIKA AND D. CONSTANTINE

2.4. Controlling the omitted terms. We now turn our attention to∑
j /∈∪[ni,2ni) χB( 1

2 ,ri)
(T ix), that is, the terms omitted in our consideration of gi.

Recall that βi(x) =
∑ni+1−1
j=2ni

χB( 1
2 ,rj)

(T jx), where we understand that βi ≡ 0 if

ni+1 = 2ni. Notice that it is possible that βi ≡ 0 for many i. As we will see below,
the assumptions on T in Theorem 2.3 will imply that for most i, βi contributes
little to the sum we are considering. This will enable us to prove the main result
of this section:

Proposition 2.25. Under the assumptions of Theorem 2.3, for any ε > 0 there

exists ξ0 > 0 so that if ξ0 > ξ > 0 then for almost every x we have
∑N−1
i=1 βi(x) <

ε
∑nN−1
i=1 2ri for all sufficiently large N . (N is allowed to depend on x.)

The first step is to prove a version of Lemma 2.8 for our current setting, a bound
on ‖βi‖∞. We accomplish that in the following Lemma and Corollary. Recall that
ai+1 = ni+1

ni
.

Lemma 2.26. If ‖βk‖∞ > max{ 10ξ ,
10
ξ (
∑k
i=1 ‖gi‖1)

2
3 }, then there exists a constant

C > 0 such that ak+1 > Ck
2
3 . C depends only on r1, the first term in our Khinchin

sequence.

Proof. Because {T ix}nk+1−1
i=0 is eT (nk+1) > ξ

nk+1
= ξ

ai+1ni
-separated, ‖βk‖∞ ≤

2ak+1

ξ nkr2nk +1, using the argument of Lemma 2.8. As for almost every x, βk(x) >
10
ξ and ξ is small, we can reformulate this bound as ‖βk‖∞ ≤ 4ak+1

ξ nkr2nk . Note,

in addition, that by our Khinchin condition, ‖gi‖1 ≥ 2nkr2nk for all i ≤ k and so

(
∑k
i=1 ‖gi‖1)

2
3 ≥ (k2nkr2nk)

2
3 .

Using that ‖βk‖∞ ≤ 4ak+1

ξ nkr2nk , and by assumption, ‖βk‖∞ >
10
ξ (
∑k
i=1 ‖gi‖1)

2
3 ≥ 10

ξ (k2nkr2nk)
2
3 ,

4

ξ
ak+1nkr2nk >

10

ξ
(k2nkr2nk)

2
3

and so

ak+1(nkr2nk)
1
3 > k

2
3 .

Using this inequality and the fact that the Khinchin condition implies that nkr2nk ≤
1
2r1,

ak+1 >

(
2

r1

) 1
3

k
2
3 ,

proving the Lemma. �

Corollary 2.27. For almost every x, for all but finitely many k, βk(x) <

max{ 10ξ ,
10
ξ (
∑k
i=1 ‖gi‖1)

2
3 }.

Proof. First, by our assumptions that ak ≤ k
4
3 for all but finitely many k, we have

that for such k, ‖βk(x)‖1 ≤
∑ 4

3 log2(k)
j=1 2jnkr2jnk . By the Khinchin condition on

{ri} this is O(log(k)nkr2nk). Recall that in the proof of Lemma 2.26, we saw that

(
∑k
i=1 ‖gi‖)

2
3 ≥ (knkr2nk)

2
3 .
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We claim that for such k,

λ

({
x : βk(x) > max{10

ξ
,

10

ξ
(

k∑
i=1

‖gi‖1)
2
3 }

})
= O

(
log(k)

k
2
3

)
.

Indeed, using the estimates noted in the previous paragraph,

λ

(
{x : β(x) >

10

ξ
(

k∑
i=1

‖gi‖)
2
3 }

)
≤ ‖βk‖1

10
ξ (knkr2nk)

2
3

≤

O

(
log(k)(nkr2nk)

1
3

k
2
3

)
= O

(
log(k)

k
2
3

)
.

The last step uses that {ri} is a Khinchine sequence and so nkr2nk <
1
2r1.

By Lemma 2.26, for large k, the set of x for which βk(x) has such large values

has positive measure only if ak ≥ k
1
2 . But assumption (3) of Theorem 2.3 is that∑

k:ak>k
1
2

log(k)

k
2
3

<∞. This implies the corollary via the Borel-Cantelli Lemma. �

The next step is the following probabilistic result, which is an analogue of Propo-
sition 2.6:

Lemma 2.28. Let Ki : [0, 1) → R≥0 be a sequence of functions and CN an in-
creasing, unbounded, positive sequence of real numbers CN = o(N3) satisfying the
following:

(K1) There exists some M > 0 such that
∑N
i=1 ‖Ki‖1 < CN for all N > M

(K2) There exists D0 > 0 such that maxi<N,x{Ki(x)} < D0C
2
3

N

(K3) There exists D1 > 0 such that
∑

1≤i<j<N
(∫
Ki(x)Kj(x)−

∫
Ki

∫
Kj

)
<

D1C
5
3

N

Then for almost every x

lim sup
N→∞

∑N
i=1Ki(x)−

∑N
i=1 ‖Ki‖1

CN
= 0.

Proof. Let Ri = Ki −
∫
Ki. Note that ‖Ri‖1 ≤ 2‖Ki‖1 so

∑N
i=1 ‖Ri‖1 <

2CN for N > M , that (K2) implies ‖Ri‖∞ < D0C
2
3

N , and that (K3) implies∑
1≤i<j≤N

∫
RiRj < D1C

5
3

N .

We begin by computing the variance of
∑N−1
i=1 Ri. Because ‖Ri‖22 ≤ ‖Ri‖1 ·

‖Ri‖∞ we obtain
∑N−1
i=1 ‖Ri‖22 ≤ 2D0C

5
3

N using (K1) and (K2). Using (K3),

2
∑

1≤i<j<N
∫
RiRj ≤ 2D1C

5
3

N . Therefore
∫

(
∑N−1
i=1 Ri(x))2dx ≤ 2(D0 +D1)C

5
3

N .

Fix any δ > 0. By Chebyshev’s inequality,

(13) m

(
{x :

N−1∑
i=1

Ri(x) > δCN}

)
≤ 2(D0 +D1)

δ2C
1/3
N

.

Recall that the CN are increasing and without bound. For any r, let
kr = min{N : CN > r}. Note that Ckr > r by definition. In addition, since
(N+1)4−N4 is O(N3) and CN = o(N3), for sufficiently large N , CkN4 < (N+1)4.
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Consider {x :
∑kN4−1
i=1 Ri(x) > δCkN4 }. By (13)

m

{x :

kN4−1∑
i=1

Ri(x) > δCkN4}

 <
2(D0 +D1)

δ2C
1
3

kN4

<
2(D0 +D1)

δ2N
4
3

since CkN4 > N4. These measures form a summable series, so by the Borel-Cantelli

Lemma, for almost all x,
∑kN4−1
i=1 Ri(x) > δCkN4 > δN4 for only finitely many N .

Therefore, for almost all x,

lim sup
N→∞

|
∑kN4

i=1 Ri(x)|
N4

≤ δ.

This establishes the desired convergence along the sequence {kN4 − 1}.
We now need to consider the omitted terms. Consider

(14) max
kN4≤L<k(N+1)4

L∑
i=kN4

Ri(x) ≤
k(N+1)4∑
i=kN4

Ki(x).

(The inequality holds as Ri + ‖Ki‖1 = Ki ≥ 0.) Again, we bound the variance,

using (K1), (K2), and (K3). (K1) and (K2) imply
∑k(N+1)4

i=kN4
‖Ki‖22 ≤ D0C

5
3

k(N+1)4
.

With (K3), we get an upper bound on the variance of (14) of

(D0 + 2D1)C
5
3

k(N+1)4
< (D0 + 2D1)((N + 2)4)

5
3 = (D0 + 2D1)(N + 2)

20
3

for all N sufficiently large. At the last step we have used the fact that for sufficiently
large N , Ck(N+1)4

< (N + 2)4, which relies on the CN = o(N3) assumption.

By Chebyshev’s inequality

m

x : max
L<k(N+1)4

|
L∑

i=kN4

Ri(x)| > δCkN4


 ≤ (D0 + 2D1)(N + 2)20/3

(δCkN4 )2

≤ (D0 + 2D1)(N + 2)20/3

δ2N8

≤ 2(D0 + 2D1)N−4/3δ−2

for sufficiently large N .

Therefore, by the Borel-Cantelli Lemma almost every x has

|
∑L
i=kN4

Ri(x)| > δN4 with L < k(N+1)4 only finitely many times. There-

fore, for any integer N , writing N = km4 + L with m the largest integer such that
km4 ≤ N , we get

lim sup
N→∞

|
∑N
i=1Ri(x)|
CN

≤ 2δ

for almost every x. Letting δ → 0 finishes the proof. �

Lemma 2.29. Under the assumptions of Theorem 2.3, for any ε > 0 there exists
ξ0 > 0 so that if ξ0 > ξ > 0 then

lim sup
N→∞

∑N−1
i=1 ‖βi‖1∑nN−1
i=1 2ri

< ε

where the βi(x) = βi(x, ξ) are calculated using ni(ξ) and ai(ξ).
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Proof. Let ε > 0 be given. Fix some ξ1 for which the assumptions of Theorem 2.3
hold. Let ni and ξi denote ni(ξ1) and ai(ξ1).

Notice that eT (2ni+1) = eT (2ai+1ni) >
ξ1

2ai+1ni
. Therefore, if ai+1 < A, then for

any j ≤ ai+1,

eT (2jni) ≥ eT (2ai+1ni) >
ξ0
jni

where ξ0 = ξ1
2A . For any choice of ξ < ξ0, let n′i = ni(ξ) and a′i = ai(ξ). By the

choice of ξ0, whenever n′i belongs to some [nl, nl+1) where al+1 < A, we have that
a′i+1 = 2.

We will choose A below. Once we have done so, fix ξ less than ξ0 = ξ1
2A and let

uk = max{j : n′j < nk}. Then

uk∑
j=1

2n′j∑
i=n′j

ri ≥
nk−1∑

i:i∈[nl,nl+1) and al+1<A

ri.

Indeed, by the end of the previous paragraph, for any i ∈ [nj , nj+1) with aj+1 < A,
i ∈ [n′j , 2n

′
j) for some j.

By condition (2) of Theorem 2.3, if A is sufficiently large, the upper density of
{j : ∃i ∈ [2j , 2j+1] with i /∈ ∪∞`=1[n′`, 2n

′
`)} is less than ε. By the proof of Lemma

2.7, whenever i > j we have
∑2i+1−1
k=2i rk ≤

∑2j+1−1
k=2j rk.

Sublemma 2.30. If {si} is a sequence of positive real numbers so that si ≤ sj for
all i > j and

∑
si = ∞, and if ε > 0, then for any U ⊂ N with upper density less

than ε we have

lim sup
N→∞

∑
i∈UN si∑N
i=1 si

≤ 2ε

where UN = U ∩ [1, N ].

Proof. There exists M so that |UN | < εN for all N > M . Given such an M , write
U ∩ (M,∞) as i1 < i2 < · · · and inductively assign to each ik ∈ U ∩ (M,∞) the
set of indices Gik = [(k − 1)d 1

2εe + 1, kd 1
2εe). Note that by our choice of M , each

Gi ⊆ [1, i). Then
∑
l∈Gi sl ≥

1
2εsi by our assumption on (si). Therefore

(15)

N∑
l=1

sl ≥
∑

i∈U∩(M,N ]

∑
l∈Gi

sl ≥
∑

i∈U∩[M,N ]

1

2ε
si.

Since
∑
si = ∞, Clearly lim

N→∞

∑
i∈UM

si∑N
i=1 si

= 0. Therefore, (15) proves the desired

result. �

For the β′i(x) := βi(x, ξ) we have the bound

N−1∑
i=1

‖β′i‖1 ≤
∑

j∈UN−1

2j+1−1∑
i=2j

2ri

where U = {j : ∃i ∈ [2j , 2j+1] with i /∈ ∪∞`=1[n′`, 2n
′
`)}. Applying the Sublemma

with si =
∑2i+1−1
k=2i 2rk completes the proof of the lemma. �

We are now ready to prove Proposition 2.25.
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Proof of Proposition 2.25. We prove the Proposition using Lemma 2.28, with Ki =

βi and CN =
∑nN−1
i=1 2ri. To apply it, let β̃k(x) = min{βk(x), C

2
3

k }. By Corollary

2.27 we have that for almost every x, βk(x) = β̃k(x) for all but finitely many k

and so it is enough to prove Proposition 2.25 with βk replaced by β̃k. Lemma

2.28 controls the difference between
∑N
i=1 β̃i(x) and

∑N
i=1 ‖β̃i‖1 relative to CN . By

Lemma 2.29 (and the fact that β̃k(x) ≤ βk(x)), for any ε > 0 there exists ξ0 so that

for all ξ0 > ξ > 0 we have the following control on
∑N
i=1 ‖β̃i‖1:

lim sup
N→∞

∑N−1
i=1 ‖β̃i‖1∑nN−1
i=1 2ri

< ε,

and so by Lemma 2.28, lim sup
N→∞

∑N−1
i=1 β̃i(x)∑nN−1

i=1 2ri
< ε. Therefore, to prove Proposition

2.25, it suffices to check the conditions of Lemma 2.28 with Ki = β̃i and CN =∑nN−1
i=1 2ri.

That CN is an increasing, unbounded, positive sequence is clear from its def-
inition. The assumption that ai ≤ i

4
3 for all but finitely many i implies that

nN = O((N !)
4
3 ). The Khinchin condition implies that ri ≤ r1

i for all i, so

CN = O(log nN ) = O(log(N !)) = O(
∑N
i=1 log i) = o(

∑N
i=1 i) = o(N2) and so

CN is certainly o(N3).

Condition (K1) follows from Lemma 2.29.

Condition (K2) follows immediately from the definition of β̃i.

The proof of condition (K3) follows the argument of Proposition 2.13; we sketch
the argument here, using similar notation. Let u = max({j} ∪ {i : ni <

1
rnj+1

})
and v = d(2− log2(ξ)) + q̂. (Note the slight difference in the definition of u.)

Step 1: We bound the sum over indices i satisfying j < i < u. Following the
argument of Proposition 2.13 and replacing nu < 1

rnj
with nu < 1

rnj+1
, we get∑

j<i<u

∫
β̃iβ̃j ≤

(
1 + 8

ξ

)
‖βj‖1.

We bound
∑
j<i<u

∫
β̃i
∫
β̃j as follows. Note that βj+1, . . . βu−1 are sums whose

terms have indices between 2nj+1 and nu. This range of indices can be partitioned

into log2

(
nu

2nj+1

)
intervals between successive powers of 2. Then, using Lemma 2.7

to bound the contribution of each portion of this sum between successive powers of
2 by ‖gj+1‖1, we get

∑
j<i<u

‖β̃i‖1‖β̃j‖1 ≤
∑
j<i<u

‖βi‖1‖βj‖1 ≤ ‖βj‖1 log2

(
nu

2nj+1

)
‖gj+1‖1.

Note that ‖gj+1‖1 ≤ 2nj+1rnj+1
and that, using the definition of u, nu

nj+1
<

1
nj+1rnj+1

. Therefore,

∑
j<i<u

‖β̃i‖1‖β̃j‖1 ≤ ‖βj‖1 log2

(
1

2nj+1rnj+1

)
(2nj+1rnj+1

) ≤ ‖βj‖1.
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Altogether, summing over j as well,

∑
1≤j<N

N−1∑
j<i<u

∣∣∣∣∫ β̃iβ̃j −
∫
β̃i

∫
β̃j

∣∣∣∣ ≤ ∑
1≤j<N

C‖βj‖1 ≤ CCN

for some constant C > 0, which is a sufficient bound for this part of the double
sum.

Step 2: For some constant K ′ independent of j we can bound

N−1∑
j+1≤i≤j+4v

∣∣∣∣∫ β̃iβ̃j −
∫
β̃i

∫
β̃j

∣∣∣∣ ≤ N−1∑
j+1≤i≤j+4v

2‖βi‖∞‖βj‖1 ≤ K ′C
2
3

N‖βj‖1

using (K2) to bound ‖βi‖∞. Summing over all 1 ≤ j < N gives a bound of K ′C
5
3

N ,
as desired.

Step 3: For the terms with indices u+ 4v < i < N , let b = 3u+i
4 . We approximate

β̃j by a function fi,j , constant on the elements of the partition by Si,j . We find
that

(16) ‖fi,j − β̃j‖1 ≤ 2aj+1nj
1

nb−v
≤ K̃2−

i−u
4 ‖gj‖1 and ‖fi,j‖∞ ≤ ‖β̃j‖∞.

We use here that as ‖gj‖1 ≥ 2njr2nj ≥ nj+1rnj+1 and nu+1 ≥ 1
rnj+1

(by our

definition of u), ‖gj‖1 ≥ nj+1

nu+1
≥ aj+1nj

nb−v
.

Applying Theorem 1.3 exactly as in Proposition 2.13 gives that for any nb-block
interval,

∣∣∣ n i+u2∑
j=1

χJ(T jx)− χJ(T jx′)
∣∣∣ < n i+u

2
C1e

−C2
i−u
4 |J |

with C1, C2 independent of j. Hence, as before,

∣∣∣∣∣{0 < k ≤ n i+u
2

: T kx ∈ J}
∣∣− n i+u

2
|J |
∣∣∣ < n i+u

2
C1e

−C2
i−u
4 |J |.

Writing fi,j =
∑R
l=1 αlχJl(x), we consider

∣∣∣∣∫ β̃ifi,j −
∫
β̃i

∫
fi,j

∣∣∣∣ ≤ R∑
l=1

αl

∣∣∣∣∫ β̃iχJl − |Jl|
∫
β̃i

∣∣∣∣
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as in Proposition 2.13. Again applying Lemma 2.14 with h = β̃i, n = n i+u
2

and

δ′ = C1e
−C2

i−u
4 |Jl|, we obtain∣∣∣∣∫ β̃ifi,j −

∫
β̃i

∫
fi,j

∣∣∣∣ ≤ R∑
l=1

αl

C1e
−C2

i−u
4 |Jl| · ‖β̃i‖1 +

1

n i+u
2

n i+u
2∑

k=1

∫
Jl

|β̃i − β̃i ◦ T k|dx


= ‖fi,j‖1C1e

−C2
i−u
4 ‖βi‖1 +

1

n i+u
2

n i+u
2∑

k=1

R∑
l=1

αl

∫
Jl

|β̃i − β̃i ◦ T k|dx

≤ ‖fi,j‖1C1e
−C2

i−u
4 ‖βi‖1 + ‖fi,j‖∞

1

n i+u
2

n i+u
2∑

k=1

‖β̃i − β̃i ◦ T k‖1

≤ ‖fi,j‖1C1e
−C2

i−u
4 ‖βi‖1 + ‖β̃j‖∞c̃i,j(17)

using the second statement of (16), where

c̃i,j = max{‖β̃i − β̃i ◦ T s‖1 : 0 ≤ k ≤ n i+j
2
}.

Using Lemma 2.7, we can bound ‖βj‖1 and ‖βi‖1 (and thus ‖β̃j‖1 and ‖β̃i‖1) by
log(aj+1)‖gj‖1 and log(ai+1)‖gj‖1, respectively. Because

|β̃i(x)− β̃i(y)‖ ≤ |βi(x)− βi(y)|

for all x, y, Lemma 2.16,
∑
i>u+4v c̃i,j ≤ D‖gj‖1 for some D independent of j. Then

summing (17) over the relevant indices and using (K2) to bound ‖β̃j‖∞ gives

N−1∑
i>u+4v

∣∣∣∣∫ β̃ifi,j −
∫
β̃i

∫
fi,j

∣∣∣∣ ≤(
N−1∑

i>u+4v

C ′e−C2
i−u
4 (log(ai+1) log(aj+1))

)
‖gj‖21 +D′C

2
3

N‖gj‖1.

C ′, and C ′, C2, and D′ are independent of j.

A computation using ai ≤ i4/3 for all but finitely many i shows that

N−1∑
i>u+4v

C ′e−C2
i−u
4 (log(ai+1) log(aj+1))‖gj‖21 ≤ L′C

1
3

N

for some L′ > 0 independent of j. Indeed, since there exists

C ′′ so that C ′e−C2
i−u
4 (log(i)) < 1 for all i > C ′′ log(log(j)) + j,∑N−1

i>u+4v C
′e−C2

i−u
4 (log(ai+1) ≤ C ′ log(j) log(log(j)). Considering separately the

cases that ‖gj‖1 < 1
log(j)2 and ‖gj‖1 ≥ 1

log(j)2 (which implies that Cj ≥ j
log(j)2 ) we

have the claim.

We have

(18)

N−1∑
i>u+4v

∣∣∣∣∫ β̃ifi,j −
∫
β̃i

∫
fi,j

∣∣∣∣ ≤ L′C 1
3

N +D′C
2
3

N‖gj‖1.

Summing this over all 1 ≤ j < N , we get a bound of LC
5
3

N for some L > 0
independent of j, as desired.
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From this point, the proof follows the proof of Proposition 2.13, combining es-
timates (16) and (18) with the bounds from Steps 1 and 2 exactly as before. This
completes (K3). �

We are now ready to complete the proof of Theorems 1.1 and 2.3.

Proof of Theorems 1.1 and 2.3. We want to show that, under our conditions on T
and for almost every x,

(19) lim
M→∞

∑M
j=1 χB( 1

2 ,rj)
(T jx)∑M

j=1 2rj
= 1.

Applying Proposition 2.6 with Hi = gi we have for almost all x that

(20) lim
N→∞

∑N
i=1 gi(x)∑N
i=1 ‖gi‖1

= 1.

Then, when M = 2nN − 1, we can decompose the numerator in equation (19) as
follows:

(21)

∑2nN−1
j=1 χB( 1

2 ,rj)
(T jx)∑2nN−1

j=1 2rj
=

∑N
i=1 gi(x) +

∑N−1
i=1 βi(x)∑2nN−1

j=1 2rj
.

Proposition 2.25 tells us that for almost every x,

lim sup
N→∞

∑N−1
i=1 βi(x)∑2nN−1
j=1 2rj

≤ ε

so the contribution of the βi terms to equation (21) is negligible for large N , and
they can be ignored:

(22)

∣∣∣∣∣ lim
N→∞

∑2nN−1
j=1 χB( 1

2 ,rj)
(T jx)∑2nN−1

j=1 2rj
− lim
N→∞

∑N
i=1 gi(x)∑2nN−1
j=1 2rj

∣∣∣∣∣ < ε.

Note that for all N ,

(23)

∑N
i=1 ‖gi‖1∑2nN−1
j=1 2rj

≤ 1.

Combining equations (20), (23) and (22) gives

lim sup
N→∞

∑2nN−1
j=1 χB( 1

2 ,rj)
(T jx)∑2nN−1

j=1 2rj
≤ 1.

On the other hand, by Lemma 2.29 using our second condition on T , for any
δ > 0 there exists some ξ > 0 so that, with gi defined using this ξ, we have

(24) lim inf
N→∞

∑N
i=1 ‖gi‖1∑2nN−1
j=1 2rj

≥ 1− δ.

Using equations (24), (23) and (22) gives

lim inf
N→∞

∑2nN−1
j=1 χB( 1

2 ,rj)
(T jx)∑2nN−1

j=1 2rj
≥ 1− δ.
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Letting δ → 0, we have now established equation (19) along the sequence of
times {2nN − 1}. This is sufficient. By (K2) the contribution of any terms with
index in [2nN , nN+1) will be negligible for large N and all x. The bound on gi(x)
in Lemma 2.8 tells us that for large N , the contribution of terms with index in
[nN+1, 2nN+1 − 1) will also be negligible. This completes the proof.

�

3. Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2. Recall that in this theorem the
assumption that α is badly approximable allows us to omit the Khinchin condi-
tion and consider a wider class of radius sequences {ri}. As in Section 2, we will
state and prove a generalization of Theorem 1.2 to the case of interval exchange
transformations. Using the notation developed in Section 2.1, this generalization
is:

Theorem 3.1. Let T be an IET satisfying the Keane condition so that there exists
σ > 0 with eT (n) > σ

n for all n. Then for any decreasing sequence {ri} with
divergent sum we have:

lim
N→∞

∑N
j=1 χB( 1

2 ,rj)
(T jx)∑N

j=1 2rj
= 1

for almost every x.

Let σ be such that eT (n) > σ
n for all n. If T satisfies this for some σ, we say it

is of constant type. Without loss of generality, we may assume σ < 1.

For this section we adjust our definition of the gi. For some constant C > 1

(which we will choose later) let gi(x) =
∑Ci+1−1
j=Ci χB( 1

2 ,rj)
(T jx).

The proof we provide is complicated by the fact that without the Khinchin
condition on ri it is possible for ‖gj‖1 � ‖gi‖1 for some j > i (in contrast to
Lemma 2.7). This difficulty is handled for most values of i by appealing directly
to Theorem 1.3. We must then show that the remaining indices, which are not
handled by our appeal to Theorem 1.3, make negligible contributions.

The outline of this section is as follows. We break up our indices into two
disjoint sets according to a (fixed, large) parameter M . Section 3.1 deals with
those times i such that iri < M . The proof in this section is similar to that in
Section 2 but simpler because we do not need to worry about the issues of Section
2.4. Then in Section 3.2 we treat the times i such that iri ≥ M . We partition
them into a subset where we may apply Theorem 1.3 and its complement, whose
contributions we show are negligible. Lemma 3.6 accomplishes the partitioning,
Lemma 3.9 applies Theorem 1.3, and Corollary 3.8 controls the size of the blocks
where we can not apply Theorem 1.3. We note that the arguments in Section 3.1
work for any value of M . It is for the proofs in Section 3.2 that we have to choose
a sufficiently large value of M .

Throughout this section, in an abuse of notation, rCL denotes rbCLc.

3.1. iri small. In this subsection we treat iri < M .



QUANTITATIVE SHRINKING TARGETS 27

Proposition 3.2. Let C,M be given. Let E = {i : rCi <
M
Ci }. If

∑
i∈E

∫
gi = ∞

then for almost every x,

lim
N→∞

∑N
i∈E gi(x)∑N
i∈E

∫
gi

= 1.

We first state the appropriate version of approximate T -invariance for the gi, an
analogue of Lemma 2.15.

Lemma 3.3. For all l < i,

max
k<Ca

‖gi − gi ◦ T k‖1 <
4

C − 1
Ca−l‖gl‖1.

Proof. Exactly as in the proof of Lemma 2.15, to bound ‖gi − gi ◦ T s‖1 we need
to bound 8srCi . It is easy to bound ‖gl‖1 ≥ 2Cl(C − 1)rCl+1 ≥ 2Cl(C − 1)rCi .
Letting s = Ca, we get the desired results after a quick computation. �

Proof of Proposition 3.2. Suppose that
∑
i∈E

∫
gi = ∞. Write E = {a1 < a2 <

· · · }. The idea of the proof is to show that Hi = gai satisfy the conditions (H1),
(H2) and (H3′) of Proposition 2.6 from which the result follows (see Remark 2.24).
Recall:

(H3′):

∣∣∣∣∣∣
N−1∑
j=1

N∑
i=j+1

∫
HiHj −

∫
Hi

∫
Hj

∣∣∣∣∣∣ < C2

N−1∑
j=1

‖Hj‖1.

We replace (H3) with (H3′) since we cannot appeal to Lemma 2.7.

By our assumption on rCai and Lemma 2.8 (see Remark 2.12) we have ‖gai‖∞ <
1 + 2Mσ−1 and so condition (H1) is satisfied.

Condition (H2) is one of our assumptions.

Condition (H3′) follows from the proof of Proposition 2.13, but requires a few
modifications. Cai play the role of ni and we let u′j = max({j + 1} ∪ {i : Cai <

1
r
C
aj
}). Let K be chosen for σ as in Lemma 2.20 and v′ = logC(K) + logC(2q̂).

Dividing up our sum as before we have:

N∑
i=j+1

|
∫
gaigaj −

∫
gaj

∫
gai | =

N∑
j+1<i≤u′j

|
∫
gaigaj −

∫
gaj

∫
gai |

+

N∑
i=j+1 or u′j<i≤u′j+4v′

|
∫
gaigaj −

∫
gai

∫
gaj |

+

N∑
i>u′j+4v′

|
∫
gaigaj −

∫
gaj

∫
gai |.

Bounding the first sum by a constant multiple of ‖gaj‖1 follows the argument
of Proposition 2.13, Step 1. The argument requires only a bound of the type
eT (n) > σ

n , which we have, and the argument to extend Lemma 2.8 as in the above
proof of (H1). After summing over 1 ≤ j ≤ N − 1, this portion of the sum satisfies
(H3′).

Bounding the second term by a constant multiple of ‖gaj‖1 is also a direct

application of Proposition 2.13, Step 2. It suffices to show that there exists C̃
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so that ‖gaj+1
‖∞ +

∑u′j+4v′

i=u′j
‖gai‖∞ < C̃. Because v′ is a constant, it suffices for

‖gai‖∞ to be uniformly bounded, which follows from (H1). After summing over
1 ≤ j ≤ N − 1, this portion of the sum satisfies (H3′).

The third sum requires the most care. Given i, for each k > 4v′ let

bi,k = min{j : i = u′j + k} and di,k = max{j : i = u′j + k}
and set bi,k = di,k = 0 if no u′j equals i − k. With these definitions, all j between

bi,k and di,k have the same value of u′j , namely u′bi,k = u′di,k . Let hi,k =
∑di,k
l=bi,k

gal .

Note that if bi,k = di,k = 0, then hi,k = 0.

First, we give a bound on ‖hi,k‖∞.

Sublemma 3.4. For all k, ‖hi,k‖∞ is uniformly bounded, independent of i and k,
by a constant depending only on C and σ.

Proof of Sublemma: We need only consider situations where bi,k and di,k are
nonzero.

As i and k are fixed within this proof, to simplify notation below let us write
b = bi,k, d = di,k and h = hi,k. Then

h(x) =

d∑
l=b

gal(x) =

d∑
l=b

Cal+1−1∑
j=Cal

χB( 1
2 ,rj)

(T jx).

Following the argument of Lemma 2.8, we find that

d∑
l=b

Cal+1−1∑
j=Cal

χB( 1
2 ,rj)

(T jx) ≤ d 2rCab

σ/Cad+1
e

≤ 1 +
2C

σ
rCabC

ad

≤ 1 +
2C

σ
rCabC

au′
d

= 1 +
2C

σ
rCabC

au′
b

< 1 +
2C

σ
rCab

1

rCab
= 1 +

2C

σ

using the definition of u′b at the last step. This proves the Sublemma. �

Let i > u′j + 4v′ be fixed, and write i = u′j + k. We want to bound |
∫
gaihi,k −∫

gai
∫
hi,k|. We continue to follow the argument of Step 3 of Proposition 2.13. Let

b′ = i− 3k
4 and let Si,k be the set of discontinuities of TC

a
b′ . By Lemma 2.20, Si,k

is K
Cab′

-dense.

We apply Lemma 2.17 as before to obtain fi,k approximating hi,k. Then
‖fi,k‖1 ≤ ‖hi,k‖1, ‖fi,k‖∞ ≤ ‖hi,k‖∞, and with some short calculation,

(25) ‖fi,k − hi,k‖1 ≤ 2Cabi,k+1 K

Cab′
= 2CCabi,k

K

C
a
u′
j
+ k

4

≤ K̃C− k4 ‖hi,k‖1

for some uniform K̃ > 0. We have used the definition of u′j , including the fact that

u′j > bi,k, to bound ‖hi,k‖1 ≥ 2Cabi,k r
C
abi,k+1 ≥ 2Cabi,k r

C
a
u′
j
≥ 2C

adi,k (C−1)

C
a
u′
j
+1

.
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We apply Theorem 1.3 as before. For any Cab′ -block interval J and any x,∣∣|{0 < k ≤ Cai−k/4 : T kx ∈ J}| − Cai−k/4 |J |
∣∣ < Cai−k/4C ′1e

−C̃2
k
2 |J |

where C̃2 = C2

logC(2) . Proceeding precisely as in Proposition 2.13 and the proof of

Proposition 2.25, we obtain∣∣∣∣∫ gaifi,k −
∫
gai

∫
fi,k

∣∣∣∣ ≤ ‖fi,k‖1C ′1e−C̃2
k
2 ‖gai‖1 + ‖fi,k‖∞c̃i,k

where
c̃i,k = max{‖gai − gai ◦ T k‖1 : 0 ≤ k ≤ Cai−k/4}.

We apply Lemma 3.3 with a = ai−k/4 and l = ai−1 and obtain that c̃i,k <
4

C−1C
ai−k/4−ai−1‖gai−1‖1 ≤ 4C

C−1C
− k4 ‖gai−1‖1. Therefore, using that ‖fi,k‖1 ≤

‖fi,k‖∞ ≤ ‖hi,k‖∞ and ‖gaj‖∞ are universally bounded,

(26) |
∫
gaifi,k −

∫
gai

∫
fi,k| ≤ D̂1e

−C̃2
k
2 ‖gai‖1 + D̂2C

− k4 ‖gai−1
‖1.

We now follow the end of the proof of Proposition 2.13. The exponential decay
in equations (25) and (26) and the universal bound on ‖gai‖∞ allows us to show
that

N∑
i=1

N−1∑
k=1

∣∣∣∣∫ gaihi,k −
∫
gai

∫
hi,k

∣∣∣∣ ≤ C2

N∑
i=1

‖gai‖1.

It is straightforward to check that this implies (H3′) with Hi = gai , as desired. �

3.2. iri big. When iri ≥ M we want to use the next lemma, which requires M
sufficiently large:

Lemma 3.5. Let T be of constant type and C > 1. Then, uniformly in a ∈ [0, 1],

lim
M→∞

lim sup
j→∞

sup
x

∣∣∣∣∣∣
 Cj+1

2M(Cj+1 − Cj)

Cj+1−1∑
i=Cj

χB(a, M

Cj+1 )(T
ix)

− 1

∣∣∣∣∣∣ = 0.

Proof. Fix ε > 0. Fix C and a value of k to be chosen later. Because T is of
constant type, for any choice of k, for sufficiently large M (which depends on k),
any interval B(a, M

Cj+1 ) can be approximated up to an ε proportion by Cj−k-blocks
(of T ), for j sufficiently large (independent of a). The remainder of the proof is
determining how large k needs to be.

We now choose ni = 3i in the statement of Theorem 1.3 with c = σ. By Theorem
1.3, by choosing Q large enough (given C, σ and ε

4 ) we have that if nr is the largest

ni < Cj−k+Q and Ĵ is any Cj−k-block we have

(27)

∣∣∣∣∣ 1

nr

nr∑
i=1

χĴ(T iTC
j

x)− |Ĵ |

∣∣∣∣∣ < ε/4 for all x.

Note that Q may be chosen independent of k.

First, choose k so large that Cj−k+Q < Cj+1 − Cj . Let d =
⌊
Cj+1−Cj

nr

⌋
> 0.

Decompose the sum in the lemma into d sums over nr indices each, together with
a remainder sum of length < nr. Applying inequality (27) to the length-nr sums,
we obtain
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∣∣∣ 1

Cj+1 − Cj
Cj+1−Cj∑

i=1

χĴ(T iTC
j−1x)− |Ĵ |

∣∣∣
=

1

Cj+1 − Cj

d−1∑
`=0

(`+1)nr+C
j∑

i=`nr+Cj

χĴ(T ix) +

Cj+1∑
i=dnr+Cj

χĴ(T ix)

− |Ĵ |
≤ 2

d

∣∣∣ d−1∑
`=0

 1

nr

(`+1)nr+C
j−1∑

i=`nr+Cj

χĴ(T ix)− |Ĵ |

+
1

dnr

Cj+1−1∑
i=dnrCj

χĴ(T ix)
∣∣∣

≤ 2

d
d
ε

4
+

2

dnr
max
y

nr∑
i=1

χĴ(T iy) ≤ ε

2
+

2

d
.(28)

Similarly, let U be the subset of B(a, M
Cj+1 ) that is not made up of Cj−k blocks.

It is at most 2 intervals. By the constant type assumption, we bound

(29)

∣∣∣∣∣∣
Cj+1−1∑
i=Cj

χU (T ix)

∣∣∣∣∣∣ ≤ (Cj+1 − Cj)σ−1|U |+ 1

for all x, independent of a. Given any choice of k, we choose M large enough at
the beginning to make |U | < ε 2M

Cj+1 , controlling the contribution of inequality (29).

The lemma now follows if we can choose k and M large enough to make equation
(28) less than ε. This is clear as, for large j, by taking k large we can ensure nr is
small compared with Cj+1 − Cj , and therefore that d is large. This completes the
proof. �

The next lemma lets us split up the natural numbers into subsets where we
appeal to Proposition 3.2, subsets where we can apply Lemma 3.5 (see Lemma
3.9), and a small remaining piece that we show is negligible (see Corollary 3.8).

Throughout the remainder of this section C > 1 should be thought of as very
close to 1. Define

GC,ρ,M =

{
j ∈ N : rCj+1 ≥ M

Cj+1
and ρrCj ≤ rCj+1

}
and

BC,ρ,M =

{
j ∈ N \GC,ρ,M : rCj+1 ≥ M

Cj+1

}
.

When ρ is very close to 1, GC,ρ,M is the set of indices where Cauchy condensation
(that is, replacing ri with rCj+1 for Cj < i ≤ Cj+1) is a mild change in the size of
radii.

Lemma 3.6. For any ε > 0 and any ρ < 1, there exists C > 1 so that for any
non-increasing sequence {ri} ⊂ R+, we have

lim sup
N→∞

∑
j∈BC,ρ,M :Cj+1<N (Cj+1 − Cj)rCj∑N

i=1 ri
< ε

for all M > 2 max{1, r1}.
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Proof. Let ε > 0 and ρ < 1 be given. By assumption r1 <
M
2 .

Enumerate BC,ρ,M = {b1, b2, . . .} in increasing order.

Claim: bn ≥ n logC( 1
ρ ) + logC(2)− 1.

Proof of claim: By definition of BC,ρ,M , each new bi decreases rCj by a factor

of at least ρ. Since rCb1 <
M
2 , this implies that rCbn <

M
2 ρ

n−1. Therefore, using
again the definition of BC,ρ,M ,

M

Cbn+1
≤ rCbn+1 ≤ ρrCbn <

M

2
ρn.

Taking logC of both sides yields the claim.

Let S0 = ∅. Define Sk inductively by letting Sk+1 be the d :=
⌈
1
2 logC( 1

ρ )
⌉

largest indices in

{1, 2, . . . bk+1} \

(
BC,ρ,M ∪

k⋃
i=1

Si

)
.

The claim above ensures that, for any choice of ρ if C > 1 is small enough, such a
set exists.

To prove the Lemma, it clearly suffices to show that for all small enough C > 1,
for all sufficiently large k, we have

(30) ε
∑
j∈Sk

Cj+1−1∑
i=Cj

2ri > 2(Cbk+1 − Cbk)rCbk .

First, we choose C > 1 such that C < 1
ρ . Write Sk = {u1 > u2 > · · · > ud}.

Then,
d∑
j=1

Cuj+1−1∑
i=Cuj

2ri ≥
d∑
j=1

2rCuj+1Cuj (C − 1).

Suppose that mj ≥ 0 of the bi lie in [uj + 1, bk). Then, from the definition of
BC,ρ,M , rCuj+1 > ( 1

ρ )mjrCbk and uj = bk − j −mj . Applying this to the bound

above, we have

d∑
j=1

Cuj+1−1∑
i=Cuj

2ri ≥
d∑
j=1

2

(
1

ρ

)mj
rCbkC

bk−j
(

1

C

)mj
(C − 1).

Then, using the assumption C < 1
ρ and so ( 1

ρ )mj ( 1
C )mj > 1 and carrying out the

sum and using the definition of d, we find that

(31)

d∑
j=1

Cuj+1−1∑
i=Cuj

2ri ≥ 2rCbkC
bk(1− C−d) ≥ 2rCbkC

bk(1−√ρ).

If we pick C > 1 so that

ε2rCbkC
bk(1−√ρ) > 2rCbkC

bk(C − 1)

(which is clearly possible) then inequality (31) shows that inequality (30) establishes
the lemma. �
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To control
∑Cj+1−1
k=Cj χB( 1

2 ,rk)
(T kx) where j ∈ BC,ρ,M we need the following re-

sult.

Lemma 3.7. Let T be an IET of constant type, {ri} nonincreasing. Then for all
x,

Cj+1−1∑
i=Cj

χB( 1
2 ,ri)

(T ix) <
2rCj

σ
(Cj+1 − Cj) + 1.

The proof of this Lemma is essentially the same as the proof of Lemma 2.8.

Corollary 3.8. For every ε > 0 and ρ < 1 there exists C so that for all x, and all
large enough M we have∑N ′

j∈BC,ρ,M
∑Cj+1−1
i=Cj χB( 1

2 ,ri)
(T ix)∑N ′

j=1

∑Cj+1−1
i=Cj 2ri

< ε

for sufficiently large N ′.

Proof. By Lemma 3.7, for all j,

Cj+1−1∑
i=Cj

χB( 1
2 ,ri)

(T ix) <
2rCj

σ
Cj(C − 1)rCj + 1.

Using this fact, for all x we have,∑N ′

j∈BC,ρ,M
∑Cj+1−1
i=Cj χB( 1

2 ,ri)
(T ix)∑N ′

j=1

∑Cj+1−1
i=Cj 2ri

<

∑N ′

j∈BC,ρ,M
2rCj
σ Cj(C − 1) + 1∑N ′

j=1

∑Cj+1−1
i=Cj 2ri

.

Note that for j ∈ BC,ρ,M , we have CjrCj ≥ M
Cρ . Therefore, for M sufficiently large

(say, > (C − 1)−1),we have∑N ′

j∈BC,ρ,M 1∑N ′

j=1

∑Cj+1−1
i=Cj 2ri

= O

∑N ′

j∈BC,ρ,M
2rCj
σ Cj(C − 1)∑N ′

j=1

∑Cj+1−1
i=Cj 2ri

 .

Therefore, it is sufficient to bound

∑N′
j∈BC,ρ,M

2r
Cj
σ Cj(C−1)∑N′

j=1

∑Cj+1−1

i=Cj
2ri

. We apply Lemma 3.6

with N = CN
′+1 − 1 to this and obtain that for all sufficiently large M and N ′,∑N′

j∈BC,ρ,M

2r
Cj
σ Cj(C−1)∑N′

j=1

∑Cj+1−1

i=Cj
2ri

is bounded by some fixed multiple of ε, proving the result.

�

Lemma 3.9. For any ε > 0 and C > 1 there exists M0 > 1 so that if M > M0

and ρ = 1− ε2σ
4 then for all sufficiently large j ∈ GC,ρ,M and all x,∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)∑Cj+1

i=Cj 2ri
∈ [1− ε, 1 + ε].
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Proof. Fix ε > 0. We may assume that ε < 3
8 and that σ < 1. First, note that to

prove the Lemma it is sufficient to show that for sufficiently large j ∈ GC,ρ,M ,

supx
∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)

infx
∑Cj+1

i=Cj χB( 1
2 ,rCj+1 )(T

ix)
≤ 1 + ε.

By Lemma 3.5 we have that if M is large enough

supx
∑Cj+1

i=Cj χB( 1
2 ,rCj+1 )(T

ix)

infx
∑Cj+1

i=Cj χB( 1
2 ,rCj+1 )(T

ix)
≤ 1 + ε,

and so it suffices to show that for any ε > 0,

(32)
supx

∑Cj+1

i=Cj χB( 1
2 ,ri)\B( 1

2 ,rCj+1 )(T
ix)

infx
∑Cj+1

i=Cj χB( 1
2 ,rCj+1 )(T

ix)
≤ ε.

First, we bound the numerator of (32). ConsiderB( 1
2 , ri)\B( 1

2 , rCj+1) for i ≥ Cj .
It consists of two intervals of size at most (1− ρ)rCj since j ∈ GC,ρ,M . By Lemma
3.7 and our choice of ρ,

sup
x

Cj+1∑
i=Cj

χB( 1
2 ,ri)\B( 1

2 ,rCj+1 )(T
ix) ≤ 2 + 2(1− ρ)rCj2

(Cj+1 − Cj)
σ

= 2 +
ε2

2
2rCj (C

j+1 − Cj).(33)

To bound the denominator of (32) below we appeal to Lemma 3.5. First, let M ′0
be so large that for all a ∈ [0, 1] and all x,

Cj+1∑
i=Cj

χ
B(a,

M′0
Cj+1 )

(T ix) ≥
(

1− ε

3

)
2
M ′0
Cj+1

(Cj+1 − Cj)

for sufficiently large j (independent of a). Let M0 = max{3M ′0, 4ε−1C(C − 1)−1}.
We consider j ∈ GC,ρ,M with M > M0, rCj+1 ≥ 3

M ′0
Cj+1 . Partition B( 1

2 , rCj+1) into

λ ≥ 3 intervals of size
2M ′0
Cj+1 and one interval of size <

2M ′0
Cj+1 . Let B be the union of

the λ intervals. Applying Lemma 3.5 as above to each of the λ intervals forming B
we obtain, for sufficiently large j ∈ GC,ρ,M ,

Cj+1∑
i=Cj

χB( 1
2 ,rCj+1 )(T

ix) ≥
Cj+1∑
i=Cj

χB(T ix)

≥
(

1− ε

3

)
λ

2M ′0
Cj+1

(Cj+1 − Cj)
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Further, because (λ+ 1)
2M ′0
Cj+1 > 2rCj+1 this is

≥
(

1− ε

3

)( λ

λ+ 1

)
2rCj+1(Cj+1 − Cj).

≥
(

1− ε

3

)(3

4

)
2rCj+1(Cj+1 − Cj).

≥ 1

2
2rCj+1(Cj+1 − Cj).(34)

since ε < 1.

Combining inequalties (33) and (34),

supx
∑Cj+1

i=Cj χB( 1
2 ,ri)\B( 1

2 ,rCj+1 )(T
ix)

infx
∑Cj+1

i=Cj χB( 1
2 ,rCj+1 )(T

ix)
<

1 + ε2

2 rCj (C
j+1 − Cj)

1
2rCj+1(Cj+1 − Cj)

.

Now, 2
rCj+1 (Cj+1−Cj) ≤

ε
2 using our choice of M0 ≥ 4ε−1C(C − 1)−1. Also,

ε2rCj (C
j+1−Cj)

rCj+1 (Cj+1−Cj) ≤
ε2

ρ ≤
4
3ε

2 ≤ ε
2 using the fact that j ∈ GC,ρ,M , our choice of

ρ, and the fact that ε < 3
8 . This completes the proof. �

We note the following facts about the results above. First, ρ does not depend
on C and so we may choose C for Lemma 3.6 to hold. Also our only requirement
on M in Corollary 3.8 and Lemma 3.9 is that it is large enough. So given ρ, C we
may choose (a possibly larger) M so that Corollary 3.8 and Lemma 3.9 hold.

We are now ready to prove Theorems 1.2 and 3.1.

Proof of Theorems 1.2 and 3.1. It suffices to show that for all δ > 0 there exists
C > 1 so that

lim inf
N→∞

∑N
j=1

∑Cj+1

i=Cj χB( 1
2 ,ri)

T ix∑N
j=1

∑Cj+1

i=Cj 2ri
> 1− δ

and

lim sup
N→∞

∑N
j=1

∑Cj+1

i=Cj χB( 1
2 ,ri)

T ix∑N
j=1

∑Cj+1

i=Cj 2ri
< 1 + δ.

Choose ε = δ
2 and ρ = 1 − ε2σ

4 . Following Corollary 3.8, choose C for this ρ and
ε. Following Lemma 3.9 and Corollary 3.8, choose M for these ρ, C, ε. Then by
Lemma 3.9 we have

lim sup
N→∞

∑N
j∈GC,ρ,M

∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)∑N
j∈GC,ρ,M

∑Cj+1

i=Cj 2ri
< 1 +

δ

2

and

lim inf
N→∞

∑N
j∈GC,ρ,M

∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)∑N
j∈GC,ρ,M

∑Cj+1

i=Cj 2ri
> 1− δ

2
.

Proposition 3.2 implies

lim
N→∞

∑N
j/∈(GC,ρ,M∪BC,ρ,M )

∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)∑N
j/∈(GC,ρ,M∪BC,ρ,M )

∑Cj+1

i=Cj 2ri
= 1
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for almost every x. By Corollary 3.8

lim sup
N→∞

∑N
j∈BC,ρ,M

∑Cj+1

i=Cj χB( 1
2 ,ri)

(T ix)∑CN+1

i=1 2ri
<
δ

2

for all x, which completes the proof. �

4. Quantitative Boshernitzan’s criterion

This section uses Appendix A. In that Appendix, we recall that T : [0, 1)→ [0, 1)
is measure conjugate to a subshift S : X → X of the full shift on d symbols. In
this section we use both of these (measure-theoretically) equivalent descriptions of
the dynamics for various proofs, as suits our purposes.

We want to prove a quantitative version of the following:

Theorem 4.1 (Boshernitzan [3]). Let S : X → X be the left shift acting minimally
on a symbolic dynamical system. Let µ be an S-invariant measure. Let εn be the µ
measure of the smallest cylinder set of length n. If there exists a constant c such
that for infinitely many n, εn ≥ c

n , then S is µ-uniquely ergodic.

An analogue of this result was proved for IETs by Veech [17], in which case the
invariant/ergodic measure is Lebesgue. Masur [15] established the analogous, in
fact stronger, result for flows on flat surfaces.

We will prove Theorem 1.3, stated in the introduction for T , for the shift S
measure conjugate to T described in Appendix A:

Theorem 4.2. Let S : X → X be the symbolic system for a minimal IET, µ be an
invariant measure and εn be the smallest µ-measure of an n-cylinder of S. Assume
there exists some c > 0 and a sequence (ni) with ni ≥ 10ni−1 such that εni >

c
ni

for
all i. Let w be a word of length ni and let χw be the characteristic function for the
cylinder set defined by w. Then there exist positive constants C1, C2, q̂ depending
only on c such that for all x, x′ ∈ X we have

1

ni+q̂+L

∣∣∣∣∣∣
ni+q̂+L∑
j=1

χw(Sjx)− χw(Sjx′)

∣∣∣∣∣∣ < C1e
−C2Lµ(w)

for all L ∈ N. Here, µ(w) denotes the measure of the cylinder set defined by w.

We note that in Theorem 1.3 we assumed ni ≥ 2ni−1. To see that Theorem 1.3
and Theorem 4.2 are equivalent, we can pass to subsequences of the form n4i+k.

This is a quantitative version of Boshernitzan’s criterion because it tells how
quickly any orbit equidistributes. Quantitative ergodicity statements for IETs and
flows have been profitably studied with deep results in [7], [18] and [1].

The next proposition is similar to results used in [17]. It provides a construction
of a set of Rokhlin towers describing the dynamics of T which will be useful in the
rest of our proof. Specifically, conditions (1), (2) and (3) define a set of Rokhlin
towers {(Ja,ma)} decomposing [0, 1). The rest of the proposition gives quantitative
control over the number of towers t, the measures of the bases of the towers (and
so the levels) |Ja|, and the heights ma of the towers.



36 J. CHAIKA AND D. CONSTANTINE

Proposition 4.3. If eT (2n) ≥ c
2n then there exist intervals J1, . . . , Jt and numbers

m1, . . . ,mt so that

(1) T iJa ∩ T jJb = ∅ for all (i, a) 6= (j, b) with 0 ≤ i < ma and 0 ≤ j < mb,
(2) ∪ra=1 ∪

ma−1
`=0 T `Ja = [0, 1),

(3) T i is continuous (and therefore an isometry) on Ja for all 0 ≤ i < ma,
(4) |Ja| ≥ eT (2n),
(5) t ≤ 2

c ,
(6) n ≤ ma ≤ 2n for all a.

Proof. Recall that PSk is the partition of [0, 1) by the discontinuities of T k. We
denote PSk by Pk. If I ∈ Pk, then I has the form [T−n1δ1, T

−n2δ2), where δi are
discontinuities of T and 0 ≤ ni ≤ k − 1, and T k|I is continuous.

We will construct the Rokhlin towers by drawing the Ja’s from the collections
Pn and P2n. This will ensure that (3) and (4) are satisfied. Once ma are chosen
satisfying (6), [0, 1) is the union of at least n copies of each Ja. Since |Ja| ≥
eT (2n) ≥ c

2n the ma copies of Ja cover a subset of [0, 1) of measure at least c
2 .

Once the disjointness described in (1) is assured, this implies that there are at most
2
c of the Ja’s, proving (5).

The rest of our proof uses the following simple claim:

Claim: If I1, I2 ∈ Pk, then T l1I1 ∩ T l2I2 6= ∅ for some 0 ≤ l1 ≤ l2 < k implies
T l1I1 ⊆ T l2I2.

Proof of claim: We may assume l1 < l2, and then it is sufficient to prove the result
for l1 = 0 by applying T−l1 .

As noted above I2 = [T−n1δ1, T
−n2δ2) for some 0 ≤ ni ≤ k − 1. Suppose that

I1∩T l2I2 6= ∅ for some 0 < l < k. Unless I1 ⊆ T l2I2, we have T l2(T−niδi) ∈ Int(I1)
for either i = 1 or 2. Then Int(Tni−l2I1) contains the discontinuity δi. But
ni − l2 ≤ k − 2 and so T k|I1 is not continuous, a contradiction. �

Let J1, . . . , Jr be a maximal subset of Pn so that T i(Ja) ∩ T j(Jb) = ∅ for all
(i, a) 6= (j, b) with 0 ≤ i, j < n. (The claim applied with I1 = I2, an element of
Pn of minimal length, ensures that such a subset exists. Indeed continuity follows
from the fact that I1 is an element of Pn and disjointness follows from Lemma 2.9.)
Let ma = n for a = 1, . . . r and V1 = ∪ra=1 ∪n−1i=0 T

iJa.

If V1 = [0, 1) we are done. Otherwise split V c1 into two sets:

UA = {x : ∃i < 0 < j so that T ix, T jx ∈ V1 and j − i < n}

UB = (V1 ∪ UA)c.

We now show that UA and UB are both unions of elements of P2n. For each
x ∈ UA, consider the element I of Pn so that x ∈ I. We have T iI ∩Ja 6= ∅ for some
0 < i < n and some 1 ≤ a ≤ r. Moreover, T−i(T iI ∩ Ja) is a union of elements in
P2n. Therefore elements of P2n are either contained in UA or disjoint from it. Since
elements of P2n are clearly either contained in V1 or disjoint from it, similarly UB
is a union of elements of P2n.

Now we show how to cover UB as in the statement of the proposition. Let
I ′1, ..., I

′
u be the elements of P2n which are contained in UB and such that T−1I ′i ∩

V1 6= ∅. By construction these also have T−1I ′i∩∪ra=1T
n−1Ja 6= ∅. By the claim, this
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implies for each i there exists a so that T−1I ′i ⊂ Tn−1Ja. Now if Tm
∗
I ′i∩(∪ra=1Ja) 6=

∅ for some m∗ < 2n (which is necessarily at least n) we add I ′i to our collection {Ja},
set the corresponding ma = m∗, and we add ∪m

∗−1
`=0 T `I ′i to V1. Otherwise we add I ′i

to the {Ja}, set ma = n, and add ∪n−1`=0 T
`I ′i to V1. We call such an I ′i recalcitrant.

Performing this for all of the I ′i we obtain V2. We now consider I ′′1 , ..., I
′′
v so that

I ′′j are the elements of P2n whose pre-images are contained in Tn(I ′i) for some

recalcitrant I ′i. As before we add the I ′′j to {Ja} and, if Tm
∗
I ′′j ⊂ ∪ra=1Ja for some

m∗ < 2n, which is necessarily at least n, we set ma = m∗. Otherwise we set
ma = n. We add all the ∪ma−1`=0 T `I ′′j to V2. In this way we obtain V3. We repeat
this procedure until we cannot continue, having obtained Vk. Observe Vk is covered
by a union of towers that satisfy (1), (3), (4), (5) and (6) and covers all of V1 and
UB . Therefore anything missing is in UA. We now treat these points.

Now we show how to cover Ua as in the statement of the proposition. If x ∈ V ck
then there exist I ∈ P2n and i, ` ∈ N so that x ∈ T iI, T `I ⊂ Ja for some a ∈
{1, ..., r}, 0 ≤ i < ` < n and T−1I ∩ V1 6= ∅. As above, the claim implies that
T−1I ⊂ V1. Let I1, ..., Is be these I and ji be so that T jiIi ⊂ Ia for some a. If
I1, ..., Iq are the Ii that orbit into Ja, we refine ∪n−1i=0 T

iJa to be (∪qi=1 ∪
ji+n
`=0 T `Ii)∪

(∪n−1`=0 T
`(Ja \ (∪qi=1T

jiIi))). Consider Ja partitioned into elements of P2n. By the
claim, ∪qi=1T

jiIi is a union of these partition elements and so its complement is as
well. Therefore, replacing Ja with I1, . . . Iq (with corresponding ma = ji + n) and
with the elements of Ja \ (∪qi=1T

jiIi) (with corresponding ma = n) and using the
(Ja,ma) defined in the argument above, we obtain in total a collection {(Ja,ma)}
satisfying condition (2) in addition to the previously ensured (1), (3), (4), (5) and
(6). This completes the proof. �

We also need the following results on symbolic systems:

Lemma 4.4. Let S′ : X ′ → X ′ be a symbolic system such that ε1 > c′ and εn′i ≥
c′

n′i
for a sequence n′i such that n′i ≥ 10n′i−1. Without loss of generality we assume that

c′ < 1. Let Ci = {x :
∑n′i−1
j=0 χ1(S′jx) ≥ c′2i+1

32i n
′
i}. That is, Ci is the set of all x

so that the symbol 1 occurs at least a proportion c′2i+1

32i of the time in the first n′i
symbols of x. Then µ(Ci+1) ≥ min{1, µ(Ci) + 3c′2

4 }.

The proof of this lemma is similar to [3].

Proof. We first show µ(Ci+1 \ Ci) ≥ 8c′

10 if Cci+1 6= ∅.
Let u be a word of length n′i+1 appearing in our system with the fewest occur-

rences of 1; let v be a word of length n′i+1 with the most occurrences of 1. By our

assumption that Cci+1 6= ∅, there are fewer than c′2i+1

32i n
′
i+1 occurrences of 1 in u.

Since ε1 > c′, there are at least c′n′i+1 occurrences of 1 in v. Because S′ : X ′ → X ′

is minimal, there is a word uwv = a1, ..., am occuring in X ′. Let j be the maxi-

mal index so that αj := aj , ..., aj+n′i+1
has fewer than c′2i+3

32i+1 n
′
i+1 occurrences of the

symbol 1; such an index exists by the remarks above. The cylinder set defined by
α` := a`, ..., a`+n′i+1−1 is contained in Ci+1 for all ` > j.

We now estimate the proportion of length-n′i subwords of αj which give cylinder

sets in Cci . There are fewer than c′2i+3

32i+1 n
′
i+1 occurrences of 1 in αj , each of which

occurs in at most n′i of its length-n′i subwords. Therefore, there are at most c′2

32 n
′
i+1
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length-n′i subwords (entirely) contained in αj that give cylinders in Ci. There
are n′i+1 − n′i + 1 total length-n′i subwords in αj . Therefore, we have at least

n′i+1 − n′i + 1 − c′2

32 n
′
i+1 length-n′i subwords of αj which give cylinders in Cci . All

but perhaps the first length-n′i+1 cylinder are in Ci+1. Using our assumption on
εni+1

, this gives

µ(Ci+1 \ Ci) ≥
(
n′i+1 − n′i −

c′2

32
n′i+1

)
c′

n′i+1

.

Recalling that n′i+1 > 10n′i, the bound µ(Ci+1 \ Ci) ≥ 8c′

10 follows easily.

Now we show that µ(Ci \ Ci+1) ≤ c′2

20 . Let

hi : Ci → N by hi(x) = min{n > 0 : Snx ∈ Ci}.

By the Kac Lemma (see for example [11, Theorem 3.6])
∫
Ci
hidµ = µ(X) = 1. Let

ux =
∑n′i+1−n

′
i

j=0 χCi(S
′jx) and suppose that x ∈ Ci \ Ci+1. Then

ux ≤
c′2i+3

32i+1
n′i+1

(
c′2i+1

32i

)−1
=
c′2

32
n′i+1.

Indeed, there are fewer than c′2i+3

32i+1 n
′
i+1 occurrences of 1 in the word of length n′i+1

corresponding to a point in Ci+1, each word giving a point in Ci has at least c′2i+1

32i n
′
i

occurrences of 1, and each occurrence of 1 appears in at most n′i different length-n′i
words.

Therefore, for each x ∈ Ci \ Ci+1, we have
∑ c′2

32 n
′
i+1−1

j=0 hi(S
′|jCix) ≥∑ux

j=0 hi(S
′|jCix) ≥ n′i+1 − n′i, where (as in Lemma 2.18) S′|A denotes the first

return map of S′ to A. Then

c′2

32
n′i+1 =

∫
Ci

c′2
32 n

′
i+1−1∑
j=0

hi(S
′|jCix)dµ

≥
∫
Ci\Ci+1

c′2
32 n

′
i+1−1∑
j=0

hi(S
′|jCix)dµ

≥ (n′i+1 − n′i)µ(Ci \ Ci+1).

Then we have µ(Ci \ Ci+1) ≤ (n′i+1 − n′i)
−1 c′2

32 n
′
i+1. Since n′i+1 ≥ 10n′i a short

calculation gives the bound µ(Ci \ Ci+1) ≤ 10
9
c′2

32 ≤
c′2

20 .

From these two bounds it follows that µ(Ci+1) ≥ µ(Ci) − c′2

20 + 8c′

10 ≥ µ(Ci) +
3c′2

4 . �

As a corollary we obtain:

Corollary 4.5. For any minimal symbolic system S′ : X ′ → X ′ with ε1 > c′,

εn′i ≥
c′

n′i
for a sequence n′i such that n′i ≥ 10n′i−1, there exists an integer q′ and a
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number δ > 0 (each depending only on c′) so that for any symbol a, any x ∈ X ′
satisfies

n′l∑
i=1

χa(S′ix) ≥ δn′l

for all l ≥ q′. That is, at least a proportion δ of the first n′l symbols of x are a’s.

Proof. Let q′ be such that q′ 3c
′2

4 ≥ 1. Let δ = c′2q
′+1

32q′
. For l ≥ q′ and any x,

each length-n′q′ subword of the first n′l letters of x has at least a proportion δ of

the symbol a, by Lemma 4.4 (applied for a instead of 1). This establishes the
Corollary. �

We now describe a symbolic system describing the trajectory of points through
the Rokhlin towers of Proposition 4.3.

For any n, consider Rn = {(Ja,ma)}, the set of Rokhlin towers given by Proposi-
tion 4.3 for this value of n. To a point x ∈ [0, 1) we assign the coding . . . a0, a1, a2, . . .
if x ∈ T kJa0 for some 0 ≤ k < ma0 , Tna0−kx ∈ Ja1 , Tna0−k+na1x ∈ Ja2 , and so on.
In other words, x begins in the a0 tower, and subsequently visits the towers with
indices a1, a2, . . ..

Let X ′n be the set of such codings and S′n : X ′n → X ′n the corresponding symbolic
system. This system is topologically transitive since T is, and it is an easy exercise

to check that it satisfies εn >
c′

n for c′ = c
2 . Apply Corollary 4.5 to this shift, using

n′i = 10i, obtaining q and δ which depend only on c (and not on n). Without loss
of generality, we assume δ < 1

3 .

Proof of Theorem 1.3 and Theorem 4.2. Let an integer i and a word w of length
ni be given. We want to show that

(35)
1

µ(w)
sup
x,x′

1

ni+q̂+L

∣∣∣∣∣∣
ni+q̂+L∑
j=1

χω(Sjx)− χω(Sjx′)

∣∣∣∣∣∣ < C1e
−C2L

for C1, C2, q̂ > 0 depending only on c. We show this by first bounding L = 0
case above with a bound depending only on c. Then we show that there is some
r > 0 depending only on c such that the left-hand side of (35) decays by a constant
factor ζ < 1 depending only on c for every increase of r in L. These two facts will
accomplish the proof.

L = 0: We claim that there exist constants q̂, b, B > 0 depending only on c with
q̂ ≥ d(2− log2 ξ), so that for all x,

(36) bµ(w) ≤ 1

ni+q̂

ni+q̂∑
j=1

χw(Sjx) ≤ Bµ(w).

From these bounds it will follow that for all x, x′,

1

ni+q̂

∣∣∣∣∣∣
ni+q̂∑
j=1

χw(Sjx)− χw(Sjx′)

∣∣∣∣∣∣ < (B − b)µ(w)
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as desired for the L = 0 case. The lower bound will be used below in our proof of
the exponential decay.

We prove the upper bound in equation (36), with B = 2
c , by an argument

similar to that in Lemma 2.8. Partition the interval corresponding to w into a
minimal collection of subintervals of size < εni . Since µ(w) ≥ εni , there are at most

dµ(w)
εni
e ≤ 2µ(w)

εni
of these. As εni >

c
ni

, this is < 2
cµ(w)ni. These subintervals are

hit at most once every ni iterates, so

1

ni+q̂

ni+q̂∑
j=1

χw(Sjx) ≤ 2

c
µ(w).

The choice of q̂ is not relevant for this part of the argument.

For the lower bound in (36) we do the following. Let n̂ = ni+log10
20
c2

. Note that

n̂ ≥ 20
c2 ni. Consider the set of towers Rn̂ given by Proposition 4.3. Since the union

of the towers is [0, 1), there exists some a∗ such that

µ((∪ma∗−1

i=0 SiJa∗) ∩ w) ≥ µ(w)µ(∪ma∗−1

i=0 SiJa∗) = µ(w)ma∗µ(Ja∗) ≥ µ(w)
c

2
.

By construction, µ(SiJa∗) <
1
n̂ and the SiJa∗ are disjoint for 0 ≤ i ≤ ma∗ so at

least µ(w)c/2
1/n̂ = n̂µ(w) c2 ≥

c
4ma∗µ(w) of them intersect w. The choice of n̂ and the

fact that µ(w) ≥ c
2ni

, imply c
4ma∗µ(w) ≥ 5. At most two of these intersect w in its

boundary since w codes for an interval in [0, 1). Therefore∣∣{0 ≤ i ≤ ma∗ − 1 : SiJa∗ ⊆ w}
∣∣ ≥ c

8
ma∗µ(w).

Apply Corollary 4.5 to the symbolic coding S′n̂ : X ′n̂ → X ′n̂, obtaining q′ and
δ so that for all l ≥ q′, at least a proportion δ of any word of length n′l in X ′ is
the symbol a∗. Since the symbols in X ′n correspond to words in X of length ≤ 2n̂,
every word of length 2n̂(n′q′ + 2) in X contains a subword corresponding to a word

of length n′q′ in X ′n̂ which accounts for at least a third of its length. Therefore, for
all x

1

ni+q̂

ni+q̂−1∑
j=1

χw(Sjx) ≥ 1

3
δ
c

8
µ(w)

where q̂ = log10
20
c2 + q′ + 1. We have the lower bound of (36) with b = cδ

24 and q̂
depending only on c by Corollary 4.5.

Exponential decay: We want to show that for all x, x′, and for all i and L, there
exists some r > 0 and ζ̃ < 1 such that

(37)
1

ni+q̂+L

∣∣∣∣∣∣
ni+q̂+L∑
j=1

χω(Sjx)− χω(Sjx′)

∣∣∣∣∣∣ ≤ µ(ω)(B − b)ζ̃bLr c.

We will do this by showing that there exists r so that for words formed by
completely traversing Rni+L+r the maximum and minimum occurrences of ω differ
by less than words formed by completely traversing Rni+L. We split the general
word in words formed by completely traversing Rni+kbLr c as k varies and a tiny

leftover piece. Then a simple sublemma completes the proof.
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Let ux be the finite word in the X ′ni+q̂+L coding which records the towers in

Rni+q̂+L traversed by x over the orbit segment indexed by [1, ni+q̂+L+r], omitting
the first and last symbols, which correspond to towers which x may not fully tra-

verse. We choose r so that 4
10r <

δ2

2 ; note that it depends only on the δ given by
Corollary 4.5, and hence only on c.

Consider the towers in Rni+q̂+L whose corresponding words in the coding X have
the maximal and minimal frequencies of w as subwords. Denote these frequencies
by µ(w)ΞL and µ(w)ξL, respectively. By the argument using Corollary 4.5 which
gave the lower bound of (36) above, ξL ≥ b > 0 where b depends only on c.

Now we apply Corollary 4.5 to the coding X ′ni+q̂+L , as defined in paragraphs

between Corollary 4.5 and the start of the proof. In every word in X ′ni+q̂+L , each

symbol appears with frequency ≥ δ for any subword of length at least q′. In
particular, this is true of the symbols A and a respectively representing the towers
in which w appears with frequencies µ(w)ΞL and µ(w)ξL. Let us further assume
that r > q′, a choice again depending only on c.

Now for our word ux ∈ X ′ni+q̂+L , A appears with frequency ≥ δ and a appears

with frequency ≥ δ. Therefore, the frequency of w for x is between δµ(w)ΞL+ (1−
δ)µ(w)ξL and (1−δ)µ(w)ΞL+δµ(w)ξL (up to the small error coming from omitting
the initial and final symbols in forming ux). The frequency of w for x thus lies in a
range of size bounded above by (1− 2δ)µ(w)(ΞL − ξL). Letting ζ = 1− 2δ proves
(37) for those indices j covered by the word ux. (Our eventual ζ will be different.)

Recall that for any x ∈ X we have written the orbit of x over the indices
[1, ni+q̂+L+r] as a prefix of length ≤ 2ni+q̂+L, a core piece during which the orbit
fully traverses towers from Rni+q̂+L and then a suffix of length ≤ 2ni+q̂+L. The
work above shows that range of frequencies with which core piece of the orbit hits
the cylinder set defined by w decays by the factor ζ < 1 each time L increases by
1. To complete the proof we need to incorporate the prefix and suffix.

Note that the prefix and suffix take up a proportion ≤ 4
10r of the indices in

[1, ni+q̂+L+r]. Decompose the prefix and suffix into core orbit segments fully travers-
ing towers from Rni+q̂+L−r , leaving a second set of prefix and suffix segments each

of length at most ni+q̂+L−r. These segments take up a proportion ≤ 2 · 42

102r of the
indices in [1, ni+q̂+L+r] and the range of frequencies with which w appears in these
segments is bounded above by µ(w)(ΞL−r − ξl−r) < ζµ(w)(ΞL − ξL). Proceeding
in this way, we decompose the original suffix and prefix into segments taking up

a proportion ≤ 2k · 4k

10kr
of the indices in [1, ni+q̂+L+r] in which w appears with a

frequency range < µ(w)(ΞL−kr − ξl−kr) < ζµ(w)(ΞL−(k−1)r − ξL−(k−1)r).
Therefore, we can bound the range of frequencies for the entire prefix and suffix

by µ(w)
∑L−1
k=1

4k

10kr
(ΞL−kr− ξL−kr). Then the total frequency of w over the indices

[1, ni+q̂+L+r] lies in a range of size bounded above by

(38) (1− 2δ)µ(w)(ΞL − ξL) + µ(w)

L−1∑
k=1

4k

10kr
(ΞL−kr − ξL−kr).

To prove exponential decay we use the following fact:
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Sublemma 4.6. If 0 < α, γ < 1 satisfy α + γα−1 < 1 and (xj) is a sequence of

positive numbers so that xj+1 < αxj +
∑j−1
k=1 γ

kxj−k for all j, then xj < x0(α +
γα−1)j for all j.

Proof of Sublemma. The proof is by induction. The j = 0 case is immediate. Then

xj+1 < αxj +

j−1∑
k=1

γkxj−k < α(α+ γα−1)jx0 +

j−1∑
k=1

γk(α+ γα−1)j−kx0,

where the final inequality is by induction. Now

j−1∑
k=1

γk(α+ γα−1)j−k = (α+ γα−1)j
j−1∑
k=1

(
γ

α+ γα−1
)k

< (α+ γα−1)j
γ

α+ γα−1

(
1− γ

α+ γα−1

)−1
= (α+ γα−1)j

γ

α+ γα−1 − γ
< (α+ γα−1)j

γ

α
.

Therefore,

xj+1 <
[
α(α+ γα−1)j + (α+ γα−1)j

γ

α

]
x0

which simplifies to the desired result. �

Let xj = Ξjr−ξjr, α = 1−2δ and γ = 4
10r <

δ2

2 . Then ζ̂ = (1−2δ+ 4
10r(1−2δ) ) <

(1− 2δ) + δ2

2 δ
−1 < 1 (using δ < 1

3 ). Applying the Sublemma, using the L = 0 case
to bound x0 by µ(ω)(B − b) we bound (38) by

µ(ω)(B − b)
(

1− 2δ +
4

10r(1− 2δ)

)bLr c
,

implying the theorem.

�

Appendix A. Symbolic coding for IETs

We use the symbolic coding of interval exchange transformations and concepts
related to it. In this Appendix we supply some standard definitions and terminology
related to this coding. We show the well known and useful fact that IETs are
basically the same as (measure conjugate to) continuous maps on compact metric
spaces, and we recall the definition of a Rokhlin tower, a concept which appears in
the proof of Theorem 1.3.

Definition A.1 (Standard coding for an IET). The standard coding of an interval
exchange transformation T with intervals Ii is given by

τ : [0, 1)→ {1, 2, ..., d}Z by τ(x) = ..., a−1, a0, a1, ... where T i(x) ∈ Iai .

Note that the coding map τ is not continuous as a map from [0, 1) with the
standard topology to {1, 2, ..., d}Z with the product topology.
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Definition A.2 (Blocks of a coding). Fix a point x, that is not in the orbit of a
discontinuity of T . Let

wp,q(x) = cp, cp+1, ..., cq−1, cq where τ(x) = ...c−1, c0, c1, ...

This word is a block of length q − p, or a (q − p)-block.

A key element in our proof is the n-block interval:

Definition A.3 (n-block interval). An interval J ⊂ [0, 1) is an n-block interval if
J = {x : w0,n(x) = w0,n(x0) for some x0}.

Note that the measure of an n-block interval is the length of the interval J . We
use ‘measure’ rather than ‘length’ so as not to create confusion with the length n
of the coding block corresponding to this n-block interval.

We would like to consider τ([0, 1)) as a subshift of the full shift on {1, . . . d}Z,
but the situation is not so simple. Observe that the left shift S acts continuously on
τ([0, 1)) ⊂ {1, 2, ..., d}Z. However, if T satisfies the Keane condition, then τ([0, 1))
is not closed in {1, 2, ..., d}Z with the product topology. To see this, consider points
just to the left of a discontinuity of T and the n-blocks w0,n(x) corresponding
to them. As x approaches the discontinuity and n → ∞, these finite blocks do
not converge to an infinite block in τ([0, 1)). Let X̂ be the closure of τ([0, 1)) in

{1, 2, ..., d}Z with the product topology. X̂ results from adding a countable number
of points to τ([0, 1)) which correspond to the left hand sides of points in orbits of

a discontinuity. X̂ is a compact metric space and, equipped with the left shift S,
is a subshift. Equip X̂ with a measure µ assigning to the cylinder set defined by
each block the Lebesgue measure of the corresponding block interval in [0, 1).

Let f : X̂ → [0, 1) by f |τ([0,1)) = τ−1 and extend f by continuity to the rest of

X̂. Notice that, unlike τ , the map f is continuous. Moreover the map is injective
away from τ−1 of the orbits of discontinuities, where it is 2-to-1. The left shift S
acts continuously on X̂ and if T satisfies the Keane condition, then the action of S
on (X̂, µ) is measure conjugate to the action of T on ([0, 1), Leb).

Definition A.4 (Rokhlin Tower). Let half open intervals J1, ..., Jr and natural
numbers m1, ...,mr be given such that

• T j is continuous (thus an isometry) on Ji for 0 ≤ j < mi,

•
r
∪
i=1

mi−1∪
j=0

T j(Ji) = [0, 1), and

• T j(Ji) ∩ T j
′
(Ji′) = ∅ when 0 ≤ j < j′ < mi, 0 ≤ j′ < mi′ and j 6= j′ if

i = i′.

Then we say that the
mi−1∪
j=0

T j(Ji) are Rokhlin towers. mi is called the height of the

Rokhlin tower. Each T j(Ji) is called a level of the tower.

Rokhlin towers and the symbolic coding are closely related. Up to a suffix and
a prefix, every word in τ([0, 1)) is a concatenation of the length mi coding of the
points in Ji as i ranges in {1, ..., r}. The prefix and suffix are subwords of these
codings.
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