QUANTITATIVE SHRINKING TARGET PROPERTIES FOR
ROTATIONS AND INTERVAL EXCHANGES

JON CHAIKA AND DAVID CONSTANTINE

ABSTRACT. This paper presents quantitative shrinking target results for rota-
tions and interval exchange transformations. To do this a quantitative version
of a unique ergodicity criterion of Boshernitzan is established.

1. INTRODUCTION

Let « € [0,1). The rotation R, : [0,1) — [0,1) by Ry(z) = 2 + @ mod 1 is one
of the most natural and best understood dynamical systems. For example, Herman
Weyl proved the following result on the asymptotic frequency with which an orbit
visits a fixed ball:

Theorem. Let o ¢ Q. Then for any € >0 and any a € [0,1) we have

N .
lim >im1 XB(a,e) (o) _
N —o00 N2e

This paper concerns the following question: What if the ball’s radius is allowed
to shrink as 7 increases? The focus of this paper is on treating families of sequences
of radii {r;} simultaneously and obtaining explicit conditions on « under which
theorems like the above can be proved. The following is the main result of this
paper for rotations:

Theorem 1.1. There exists an explicit, full measure diophantine condition on
a ¢ Q so that if a satisfies this condition then for any sequence {r;} such that ir;
is non-increasing and Y .~ r; = 00, and for any a € [0,1) we have

N .
X ar) (RE
(1) hm ZZZI XB( 5 z)( .%')

N
N—oo Zi:1 2r;

=1

for almost every x.

If « is badly approximable (a measure zero, full Hausdorff dimension set) then
we can relax the condition on the radius sequences further:

Theorem 1.2. If « is badly approzimable, {r;}5°, is non-increasing, and > r; =
00, then for any a € [0,1)

N i
i > iz1 XB(a,r) (FT0)

=1
N—>oo szil 27-2,

for almost every x.
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The choice of the center of these balls a does not play any role in our proof. For
the sake of concreteness, outside of the statements of our theorems we will prove
all our results for a = % The full measure set of x for which our theorems hold
does, of course, depend on a.

We note that Kurzweil showed that the conclusion of Theorem 1.2 can hold at

most for badly approximable a:

Theorem. (Kurzweil [12]) For any decreasing sequence of positive real numbers
{r:i}$2, with divergent sum there exists ¥V C [0,1), a full measure set of o, such that
for all a € V we have
oo 00 .
m (1 0B (@).r)) =1
n=1 1
for every x, where m denotes Lebesque measure.

On the other hand,
0o 0o .
m( A UBE (@),r) =1
n=1 1
for every x and every decreasing sequence of positive real numbers {r;}5, with
divergent sum iff a is badly approzimable.

Let us make the statements of Theorems 1.1 and 1.2 precise. We call a sequence
{r;} where ir; is non-increasing and Y r; = oo a Khinchin sequence. Let [aq,...]
be the continued fraction expansion of . The number « is badly approzimable if
limsup a, < co. The diophantine condition in Theorem 1.1 is as follows:

n—oo

e a, < n3 for all but finitely many n,
N N
e lim limsup% > loga; — > loga; | =0, and
C—00 N0 i=1 ita; <C
. Z % < 0.
1 k3
k:ar>k?2

Here, and throughout the paper, Zl]\és means ZieSﬂ[O N

The first condition is a standard full measure condition on « (see, e.g., [9, Thm
30]).

The second is a mild “non-divergence” condition. The a which satisfy it have
full measure, which can be seen as follows. Let p be the Gauss measure on [0,1)
and consider the L'(y) functions v(z) = log(|1]) — the logarithm of the first term
in the continued fraction expansion of z — and

o) = {log(a) if ] = a

0 else

Applying the Birkhoff Ergodic Theorem for the Gauss map, ¢(z) = 1 — [1] to
v(z) — Zf;ll vo(x) and noting that ||y(z) — Zf;ll Yo(x)|]1 = 0 as C — oo gives
the result.

For the third condition, recall that m({c : a;(a) = k}) < & (see, e.g., [9, p. 60])
so m({a : aj(a) > k}) < 2 for some constant D. Let f;(a) = %x{apjl/z}(a).

Then [ fjdm < ljf/ﬁ JBQ. Letting g(a) = Y2, fj(«), since the integrals of the f;
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are summable, [ g(a)dm =372, [ fj(a)dm < oo. Therefore g is finite for almost
all «, that is, our third condition holds for almost all a.

We will prove our results not just for rotations, but also for interval exchange
transformations (IETSs; Definition 2.1) satisfying similar diophantine assumptions.
The statement of this more general theorem (Theorem 2.3) requires a few technical
definitions and so is delayed until Section 2. We mention D. Kim and S. Marmi [10],
S. Galatolo [8], L. Marchese [13], M. Boshernitzan and J. Chaika [4], M. Marmi,
S. Moussa and J-C. Yoccoz [14] where a variety of diophantine results for interval
exchanges and rotations are proven.

A key tool in extending our work to IETSs is a quantitative version of Bosher-
nitzan’s criterion for unique ergodicity which may be of independent interest (see
Section 4 for terminology, historical discussion and proof). We call an interval
bounded by two adjacent discontinuities of 7™ (counting 0 and 1 as discontinuities)
an n-block interval of T (see Definition A.3 in the Appendix).

Theorem 1.3. Let T be a minimal interval exchange transformation. Let ep(n)
denote the minimum measure of any n-block interval of T. Let ¢ > 0. Assume
n; € N have the following two properties:

(1) "T’L—jl > 2
(2) er(n;) > vTCJ forall j.

Let J be any n;-block interval of T. Then there exist constants C1,Cs,§ > 0
depending only on ¢ such that for any points x,x’ we have

1 Titg+L ) ‘
> xu(TPz) — xy(T72")| < Cre=@E|J|
Ni+G+L =

for all L € N. |J| denotes the length of J.

Quantitative equidistribution results for interval exchanges have also been proven
by A. Zorich [18], G. Forni [7], and J. Athreya and G. Forni [1].

1.1. Related results in other settings.

Definition 1.4. Given a dynamical system (X, T, ), a sequence of sets {C;} is a
strong Borel Cantelli sequence for T if

. . 3 1
h Zz——l XCq( ) 1

Novoo S u(Cy)

for almost every x.

This paper establishes that for almost every «, any sequence of balls B (%, ;) SO
that {r;} is a Khinchin sequence is strong Borel Cantelli for R,. If the rotation is
badly approximable we may relax the condition to allow r; just non-increasing and
with divergent sum.

This question has been considered in systems of high complexity. Philipp [16]
proved that for the Gauss map, or a §-shift with the smooth invariant measure any
sequence of intervals so that the sum of the measures diverge is strong Borel Cantelli.
Dolgopyat [6] proved an analogous result for Anosov diffeomorphisms. Chernov-
Kleinbock [5] proved a similar result for topological Markov chains with a Gibbs
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measure: cylinders satisfying a certain nesting condition and so that the sum of
their measures diverge are strong Borel Cantelli. To highlight the difference between
our low complexity setting and the high complexity situation we remark that for
every rotation a there is a sequence of sets {C;} with each C; € {[0,1],[%, 2]} which
is not strong Borel Cantelli.

1.2. Outline of paper. We prove our results following a proof of the strong law
of large numbers.

In Section 2, we prove Theorem 2.3, the generalization of Theorem 1.1 to IETs.
The first key step is Proposition 2.13, which we prove in Section 2.2. This Propo-
sition says that, in the presence of the diophantine assumption, a large part of
the sum in the numerator of equation (1) can be broken up into sums over dis-
joint ranges for 7 in such a way that the resulting quantities are approximately
independent.

Section 2.3 shows, via this approximate independence result, that Theorem 1.1
is true if we ignore those terms in the sum which are not part of these roughly
independent quantities. Then Section 2.4 treats the terms ignored in Section 2.3,
showing that their contribution is negligible and finishing the proof.

We then prove Theorem 1.2 in two parts. In Section 3.1 we treat radius sequences
{r:} where sup ir; < co. In Section 3.2 we treat the general case.

Section 4 proves the quantitative Boshernitzan criterion, Theorem 1.3, which is
used in the earlier sections.

There is an appendix that provides a treatment of the symbolic coding of an IET.
This is well-known material included for completeness, and to provide a reference
for notation and terminology used elsewhere in the paper.

1.3. Acknowledgments. J. Chaika would like to thank B. Fayad and D. Klein-
bock for encouraging me to pursue this question. We would like to thank J. Athreya,
M. Boshernitzan, A. Eskin, H. Masur, R. Vance and W. Veech for helpful conversa-
tions. J. Chaika was partially supported by NSF grants DMS-1004372, DMS-135500
and DMS-1452762, a Sloan fellowship and a Warnock chair. We are also deeply
indebted to anonymous referees for many helpful suggestions on earlier versions of
the paper.

2. PROOF OF THEOREM 1.1

2.1. Setup and an outline of the proof. In this section we introduce notation
and terminology necessary to state and prove Theorem 2.3 — our extension of The-
orem 1.1 to interval exchange transformations. Our first task is to introduce an
analogue of the continued fraction expansion used to state Theorem 1.1. We also
give a short outline of the proof of Theorem 2.3 and record a few lemmas for future
use.

Definition 2.1. Given a vector L = (3,13, ...,1q) wherel; > 0 and Zle li=1, we
obtain d sub-intervals of [0,1):

L = [O,ll), I, = [ll,h +lg), ey Ig = [ll + .o+l 1).

Given a permutation m on the set {1,2,...,d}, we obtain a d-Interval Exchange
Transformation (IET) T':[0,1) — [0,1) which exchanges the intervals I; according
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to . That is, if x € I; then

T(I) =x — Zlk + Z lr.

k<j (k") <7 (j)

Throughout the paper, we work with the Lebesgue measure on [0, 1), which is
invariant under any IET. The Lebesgue measure of a set A will be denoted by
m(A). For intervals, we will write |J| for m(J).

The points D = {37_, 1;}9Z1 are the discontinuities of T. The discontinuities

of T™ are U?;ol T~'D. Generalizing the behavior of irrational circle rotations to
IETs is the Keane condition:

Definition 2.2. T satisfies the Keane condition if the orbits of all its discontinu-
ities are infinite and disjoint.

This full measure condition will be assumed for Theorems 2.3 and 3.1.

Given an IET T, let er : N — R be defined as follows: ep(n) is the minimum
distance between two discontinuities of 7. If two discontinuities orbit into each
other then er(n) is defined to be 0. Since T71({0,1}) is contained in the set of
discontinuities we have that er(n) is at most (i.e. <') the measure of the smallest
(n—1)-block interval (see Appendix A). Notice that et is a non-increasing function.

Fix £ > 0. We define an increasing sequence of integers n;(£) inductively as
follows. Let no(€) = 1 and let n;y 1 = min{2¥ > n; : ep(2n41) > ——}. Let

MNi41

a;(§) = "11 Below, we will suppress £ in our notation.

Theorem 2.3. Let T be an IET satisfying the Keane condition so that for every
€ > 0 there exists € > 0, C' so that

(1) a; < i3 for all but finitely many i,

(2) limsupy o0 (Zil loga; — EZ<C log ai) <€, and

3) logk o0,

1 2
kap>k2 3

Then for any Khinchin sequence {r;} and any a € [0,1) we have

N i
o ar V(T2
(2) h Zj_l XB( s ])( ) 1

N
N— .
° > j—12r;

for almost every x.

Remark 2.4. Note that for any & < 1, for all rotations R,, if ¢; is the denominator
of the i*" convergent to a, then eg_(g; — 1) > 2%1_ (see, e.g., [9, §6]). Since ¢;4+1 =
a;q; + gi—1 where a = [ag,aq,...] is the continued fraction expansion of «, our
definition of the a; for Theorems 2.3 and 3.1 (the IET version of Theorem 1.2) is
inspired by the partial fraction expression for rotations.

To see how Theorems 1.1 and 1.2, stated as they are for rotations, follow from
Theorems 2.3 and 3.1 stated for IETs, it is a short exercise to verify that if 2% <
q; < 2k+1 then 2F~! satisfies the inequality required to be an n; with & < i.

Therefore, when addressed with the machinery of Theorems 2.3 and 3.1, new n;

1Throughout the paper, when we write ‘at most’ we mean <. We avoid using this term when
a distinction between < and < is important for our arguments.
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appear whenever a new ¢; is reached (except when a; = 1, in which case we may
have to wait for ¢;41). The a; for the IET machinery will be bounded above by a
small fixed multiple of the a; for the continued fraction expansion. Theorems 2.3
and 3.1 still work after accounting for this multiple, proving Theorems 1.1 and 1.2.

The proof of Theorem 2.3 proceeds as follows. First, we split up the sum in the

numerator of equation (2) into sums over disjoint sets of indices. Specifically, let

2717;71

g9i(x) = Z XB(%,rj)(TJiU)-

J=mni
These sums account for much, but not all, of the numerator in equation (2). In
Sections 2.2 and 2.3 we show that Theorem 2.3 holds if we ignore terms not included
in the g;:

N
S gilx)
3) S

Remark 2.5. Note that throughout the paper, all integrals are taken with respect
to the Lebesgue measure on [0, 1].

=1.

We prove equation (3) by showing that the g; satisfy the following version of
the strong law of large numbers. Its (standard) proof is included in Section 2.3 for
completeness.

Proposition 2.6. Let H; : [0,1] — Rx>¢ so that for all i there exists Cy,Cy:

(HL) [[Hilloo < Ch
(H2) X%, [ H = +oo
(H3) 202, | Hi(x)Hi(z) — [ Hi(z) [ Hj(2)| < Ol Hiza(2)]1-
Then
i i Hi@)
N
N=vood 7l [ Hi(z)
for a.e. x.

Property (H3) should be thought of as approximate independence of the H,.
Verifying it for g; is the main work; this is shown in Section 2.2. This approximate
independence for g; comes via Lemma 2.14 from an effective equidistribution result
on T (Theorem 1.3) and approximate T-invariance of the g; (Lemma 2.15).

Having established equation (3), we complete the proof in Section 2.4 by showing
that those times not accounted for by the g; contribute negligibly to equation (2).
Let

ni+171

Bile) = X Xo(pa,)(T'2)
j=2n;
We will prove that, for almost every x

> Bi(x)=o <Z XB(;,U)(T%)> :

i<N i=1
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The B; depend strongly on the a;, and hence on the parameter £. When we need
to make this dependence explicit (for example in the proof of Lemma 2.29), we will
write 5;(z,§) for p;(x).

Before proceeding to the main elements of the proof, we collect a few Lemmas
we will need throughout. The first is a straightforward consequence of the Khinchin
condition.

Lemma 2.7. For any n > m,
2n—1 2m—1

Z 27’2' Z 27"2'.

IA

In particular, for alli > j,

A

lgillL < llg;ll-

We conclude this section with a result used to control | g;|lcc which we will
frequently quote. Since the {r;} are a Khinchin sequence, this Lemma proves that
the g; satisfy property (H1) from Proposition 2.6.

Lemma 2.8. g;(z) <1+ 2?" 2ry, for alli and x.

The proof relies on:

Lemma 2.9. (Boshernitzan [2, Lemma 4.4]) If T satisfies the Keane condition,
then for any interval J with measure < er(n + 1) there exist integers p <0 <gq
(which depend on J) such that

(1) g—p=n

(2) T* acts continuously on J forp <i<gq

(3) TH)NTI(J) =0 forp<i<j<q.
Remark 2.10. Boshernitzan proves a somewhat stronger result. One can remove the
Keane condition assumption and get the same result as long as J does not contain
any saddle connections of T' (points on the orbit of two distinct discontinuities).
The Keane condition implies that there are no saddle connections.

Remark 2.11. Note that condition (3) implies that T%(J) N T7(J) = @ for any
interval with measure < er(n+1) and 0 < |i — j| < n.

Proof of Lemma 2.8. Let J be any interval. By Remark 2.11, if T9x, T9+t7x € J,
then |J| > ep(r + 1).
Note that for all x,

2n;—1 2n; —1
(@)= Y Xpe)(T'2) < D7 Xp(dr ) (T70):
Jj=mni Jj=n;

Partition B(%,7,,) into subintervals J; with measure < er(n; + 1), using as few
intervals as possible. There are [#’ZH)W such intervals. Since the measure of J
is < er(n; +1), by Lemma 2.9, if n; < j; < jo < 2n; — 1, then at most one of T71z

and 772z can lie in Jj;. Hence

2ry, 2ry,, 2ry, 2n;2ry,
gi(z) < / < — +1< +1< -+ 1.
) er(n; +1) €T (2n;) ¢
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Remark 2.12. Note that the proof of Lemma 2.8 uses only that we have a lower
bound on er(2n;); the Khinchin condition does not play a role. Its argument will
also extend to the setting of Proposition 3.2, and we will use this argument in the
proof of Lemma 2.26, using a different lower bound on er.

2.2. Estimate on [ g;(x)g;j(x). The goal of this section is to establish property
(H3) of Proposition 2.6 for the g;.

Proposition 2.13. There exists C' so that for all j,

$ |fun oo

This proposition asserts ‘approximate independence’ of g; and g; as 7 becomes
much larger than j. To prove this, when i is sufficiently larger than j, we L'-
approximate g; by a function f; ; which is nearly independent from g;. This function
will be built using a general result, Lemma 2.17, and a result using the dynamics of
T, Lemma 2.18, and it will be constant on certain intervals of [0, 1) closely related
to the dynamics of T. Our first result shows how we can use a property of g; —
approximate T-invariance, established in Lemma 2.15 — to prove that g; is nearly
independent from a function like f; ;.

< COllgj-1ll1,

=741

where C' depends only on &.

Lemma 2.14. Assume h is a non-negative function satisfying ||h — h o Ty < &
for i <n and that J is an interval such that

In|J|—[{0<i<n:T'(z) € J}H|<nd.
Then

’/hxj—J|/h‘§6’(/h>+;§/}|h(x)—hoTi(x)|dx§6’(/h)+5.

Proof. Let e;(z) = h(z) — hoT'(x). Then |e;||; < 6 for i <n. We have

[ e > (o T ) s o)

Z hoT!(x)x(z)dr + — Z/|€Z )|dz

i=1

% 1<i<n 7i(x)€J}|dx+ﬁZ/J\ei(x)|dm

< (1] +8) ( / h(a:)dx) T ;; / e4(x)|da.

A similar calculation bounds [ hy; — |J| [ h below. The result follows from this
and the bound on ||e;];. O

IN
3\'—‘

:\'—‘

/
/
Jreo

We want to apply Lemma 2.14 when h = g;. To obtain good bounds, the first
step is to establish the approximate T-invariance of g;.
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Lemma 2.15. There exists C' so that for every j

o0

> max{llgr —gr o T*|1: 0 < s < e} < Cllg— -
k=j+1

Proof. ForanyM<Nand0§s<N—M

Z X1~ 1B(2,rl) Z XT- IB(z,TL)(T )

=M
N N
= Z XT*iB(%,ri)(x) - Z XT’i*SB(%,Ti)(‘r)
i=M i=M
N N+s
= Z XT*iB(%,ri)(x) - Z XT*JB(%,TJ-_S)(CU)
=M j=M+s

We now split the sums above into three parts — the first s terms of the first sum,
the last s terms of the second sum, and the middle terms where the indices in the
two sums overlap. After converting the last s terms back to the index 7, this gives

N N
Z XT*’iB(%,ri)(x)_ Z XT*"B(%,TI')(TS:I;)
i=M i=M
M+s—1 N
Z XT*I'B(%,H)(Z) - Z XT*FSB(%,H)(Cw
i=M i=N—s+1

+ Z XT*iB(%,ri)(x)_XT*Z'B(%,TI-,S)(:U)'
1=M-+s

Since we assume that r; is non-increasing, the L; norms of the first two terms are
each bounded above by 2sr,;. The L norm of the third term can be bounded using
a telescoping sum argument. All but 2s terms cancel, giving a maximum total L
norm of 4sry;.

As gr — gx o T*° has the above form with M = n; and N = 2n; — 1, we prove
the desired bound by bounding 8srjs appropriately, then summing over k£ > 5 + 1.
By definition, s < Mkt |- Therefore, to prove the Lemma, it suffices to bound

2

. k—j
Z;ij+1 SRL%J%;« By construction, n;+1 > 2n; so ng > QTJnL%J and hence

=y < # Therefore,

Z 8n k+JJrnk <8 Z nk”’nk

k=j+1 _]+1

Since ngry, is non-increasing, for some constant C' we have

o0
8 Z — kT < 817, Z = Cllgj-1ll1-
K=jr1 V2 Keji1 V2

Essentially the same proof also demonstrates the following:
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Lemma 2.16. There exists C' so that for every j
oo
Z max{||fx — Bk o T?|l1 : 0 < s < n%} < Cllgjlli-
k=j+1

Theorem 1.3 establishes convergence of orbit sums for functions that are constant
on intervals of continuity of T for appropriately chosen M. To use this with the
gi, we will need that some such function is close to g;. The next two lemmas show
this.

Given a finite set S C [0,1] let Pg be the finite partition of [0,1] defined by
connected components of [0,1] \ S. As a convention for this partition, we include
each point in S itself in the interval to its right (except, of course, when 1 € S);
this particular choice is not important in our arguments.

Lemma 2.17. If S is e-dense then there exists a function h which is constant on
each element of Py and whose L' difference from g¢; is at most 2n;e. Moreover, h
can be chosen so that ||h||oc < ||gilloo, [|Rll1 < [|gill1, and h can be expressed as the
sum of n; characteristic functions for intervals.

Proof. For any interval J, there exists some function ¢ which is constant on the
elements of Pg and such that ||x; — ¢||1 < 2¢ and ||@]lco < ||XJ|loo- Specifically, for
each I € Pg, if I C J, set ¢ =1 on I, otherwise set ¢ = 0 on I. Note that ¢ is the
characteristic function for an interval. The lemma follows because g; is the sum of
n; characteristic functions of intervals. O

Let Sj;, be the set of discontinuities of T%. Recall that d is the number of intervals
of our IET and that er(n;) >

2717; :

Lemma 2.18. S

nia(a-tossen 05 7 -dense.

The lemma follows from the following result, which is adapted to our situation.
This result uses the first return map. Recall that if G : X — X is a dynamical
system and A C X then the first return map of G to A is G|4 : A — A by
Gla(z) = Gmin{€>0:Gz’”€A}(aﬁ). The numbers min{¢ > 0 : Gz € A} are called
return times. Recall that the first return map of a d-IET to an interval J bounded
by adjacent discontinuities of 7" is a d-IET for d < d and the return time is constant
on each interval.

Sublemma 2.19. Let J be an m-block interval of the d-IET T. Then at most
d(2 —logy(£)) of the n; satisfy ﬁ <n; <m.
Proof. We assume ﬁ < m, as otherwise the statement is trivial.

Step 1: Tt suffices to show that there exist integers k1 < - -+ < kg with d’ < d such

that k1 < ﬁ and kg —1 < m < kg and such that if k; < i < kjyq1 then ep(i) < kj1+1~
To see this, say ng,...,nyc lie in [kj, kj11]. By the defining condition on the n,
and the condition above, we have ZLm < ﬁ Since the % > 2, we have

J 7

2
2°n; <npge < kjp < g

§

Hence ¢ < 1 —log, § and so at most 2 — log, & of the n; lie in [k;, k;j11]. Since at
most d intervals of this form cover [ﬁ, m], the result follows.
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Step 2: Defining a sequence. Consider the sequence of first return times k; <
-+ < kg for the first return map T'| ;. We note that the Keane condition guarantees
that there must be a return time > m. To see this, recall that the Keane condition
implies minimality, and then examine a point in the interior of J which takes the
minimum time to hit a discontinuity of T' (besides a discontinuity at an endpoint
of J). This must occur before returning to J (by the choice of the point) but also
at time > m (as J is an m-block interval).

Step 3: The sequence we defined satisfies the sufficient condition in Step 1. Note
that J = [T~K§, T~L§") where 8,8 are either 0, 1 or discontinuities of 7. Moreover,
for any discontiuity 6", T—"6"” € Int(J) (the interior of J) implies r > m since J
is an m-block. Write I; for the interval with return time k;.

It is clear that the smallest return time, k1, satisfies k1 < I—}” Since k1 < m, by

the remark above, the boundary point of I; in Int(J) must be in the orbit of §, ¢,
because T" acts continuously on J for 0 < i < m. Therefore, it is either T—ki-Kg
or T—*1=L(§"). Without loss of generality, let us assume it is 7-*1=%§. Pushing
J forward by T, we see that T* +5J intersects T* J. Let K; be the subinterval
of T¥J which returns to J after k; iterates of T and K the other subinterval.
Note that Ky is an ki-block, and so ep (k1) is bounded above by its length. Since
T~X Ky has not returned to J after k; iterates, the first return time for any of its
points is k. As above, this implies that |Ky| < é Therefore er(k1) < é

The argument above may be continued inductively, considering always the points
which have not yet returned to J, as long as k; < m. Therefore we have constructed
the desired integers k; and the sublemma is proved. O

Proof of Lemma 2.18. Let m = n;y42_10g,(¢)) and suppose, towards a contradic-
tion, that .S,, is not ni—dense and so there exists an m-block interval J with

|J| > ni Then I% §z n; < m. Applying Sublemma 2.19, we conclude that
the set G := {j : Ii}fl < nj < m} has at most d(2 — log,(§)) elements. Since the
n; are increasing, the set G consists of consecutive integers. Since ¢ € G, we have
i—1+d(2—1logy(§)) ¢ G, ie., ni_14d2—1og,(c)) > M, Which contradicts the fact

that the n; are increasing combined with the definition of m. ([

For use in Section 3.1, we record an analogue of Lemma 2.18 which holds under
the ‘badly approximable’ assumption of Theorems 1.2 and 3.1.

Lemma 2.20. If there exists some o > 0 such that er(n) > Z for all n, then there
exists some K > 0 such that {T'z}1, is £-dense for all z,n.

Proof. By choosing { < Z, we may choose n; = 2¢. By the previous lemma
{z,.., Tz} is 27 [m=d2-1og2(O)_dense where m = |logy(n)]. The lemma fol-
lows. U

We now prove Proposition 2.13.
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Proof of Proposition 2.13. Let w = max({j} U {i : n; < %}) Let v = d(2 —
log,(€)) + G where g is provided by Theorem 1.3. We divide up our sum as follows:

i_j:::rl’/gigj_/gj/gi
=Y ‘/gzgg /gj/gz

Jj<iu u<i<u+4v

+ > ’/gzgj /gj/gz

1>u+4v

’/gzgj /gz/gg

Step 1: We estimate the first term, in the case j < w (otherwise there is no
contribution from this term). By Lemma 2.9, T***x ¢ B(T*“z, ;) for all s so that
er(s+1) > 2ry. By definition of the n; and the choice of w, eT(Qnu) > 5 5 > %rnj.

Then for any ¢ > n;, there are at most 1 + 4rnj/(g7°nj) =1+38 £ dlS_]Olnt intervals

of size % intersecting B(T*x, 2ry). It follows that if £ > n; then

(4) |{s <2n, :T°z € B(T"z,2r¢)}| < 1+ ?

For any s € [n;,2n;) and ¢ € [nj,2n;), s > £, rs < r; and therefore B(T®z,rs) N
B(T*xz,r¢) # 0 only if T*x € B(T*x,2r;). Therefore,

5) > [oar= (145 ol < (14 5) ol

j<ilu
using Lemma 2.7.

Now we bound 3., [ gi [ g; above in terms of [lgj_1[[;. Observe that as
n;+1 > 2n; and under the assumption that j < u, u—j < logg(ng%nj). We can

straight-forwardly bound |[|g;|[1 < 2n;7,,. This implies that

2 1
log, () > log, () >u—J.
g5l T,

Therefore, using Lemma 2.7,

> lgllllgills < llgslls > lgsla

j<i<u j<i<u
< llg;]1 Tog; (2) g5l
o
(6) < 2|lgjllh < 2lgj-1l1-

Combining (5) and (6), by the triangle inequality we have

> /glgj /gg/gl

j<ilu

<241+ )Ilgg 1]

Step 2: We estimate the second term. By Lemma 2.8 we have that there exists
D independent of 4,j with [| >, ;<140 9i(2)]lcc < D. We can then apply the
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Z /g’bgj /gz/g]‘ <

‘/gzgglJr‘/gz/gj
u<i<u4+4v u<i<u44v

< >0 gilleollgslh + llgillollgs |l
u<i<u+4v

<2lgilh Y- lgilloe <2Dllgjlh < 2D|gj-1l1,
u<i<u+4v

as desired, again using Lemma 2.7 at the last step.

Step 3: We estimate the third term. To do this we will use Lemma 2.14 to
show that g; is nearly independent from f; ;, a function that is close to g; and is
constructed with the help of Lemma 2.18. We will then show that g; and g; are
nearly independent, as desired.

For fixed i, j with i > u+4v, let b = 3“'” Note that as ¢ > 4v + u in these sum

terms, b —v > u. Let 5;; be the set of dlscontlnultles of T™; in the termlnology
of Lemma 2.18, S” = S,,. By Lemma 2.18, S;; = S

Np—v+G+d(2—logs €) is np_ U+q
-dense. As njpy1 > 2ny, we have np_, > ny,4207V74 7 =
—v

Nyy12 3 V7L Then

dense, and hence nb

1 1 i—u
<25
Np—v Ny+1

+ov+1

for all 4 > u + 4wv.

Applying Lemma 2.17 to g; using the ﬁ—dense set .S; j, we obtain a function

fi,; which is constant on each element of the partition by S; ; and such that

1 i
(7) 1fis = 94llx < 2n; 27 and | fijllee < gl
Ny+1

In addition, f;; = Zlel oy X g, where J; are disjoint intervals from the partition by
S;; and a; > 0.

We have the following lower bound on |gj—1l1: |lgj— 1||1 > 2N 1Ton;_, = NyTy,
using the Khinchin condition. By our choice of u, ny41 > ——, 50 [|gj—1|1 > n;

n +1
From this and (7) we obtain

(8) Ifij —gilh < K277 [lgj-alha
for a constant K’ independent of j.
We apply Theorem 1.3, to an arbitrary ny-block interval J as follows. Let L =

i—u

7 — ¢; then np gy = Nitu. Since i > u + 4v in this step, using the definition

of v we see that L > 0 as necessary for Theorem 1.3. Then applying the theorem
(with b here in the role of Theorem 1.3’s i), we obtain for any z,z’ and any such J:

Titu

| S (@) = xa (T2 < g Cre T D] < npu Clem )
j=1

with constants C; and Cs as in Theorem 1.3 and C] = Ce2i.
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Since this bound holds for all 2/, it holds when we replace the x’ term with its
average over all /. We obtain

i—u

‘|{O<k§ni+Tu 1 Trz € J}| —n%\ﬂ’ <m+TuC’{e’C2’4

J|

for positive constants C] and C which are independent of j.

Zf: </gml _|Jl|/gi>

R
Z /giXJl - \Jll/gi :

Applying Lemma 2.14 with h = g;, n = nitu and 6 = C{e‘CQFTu |.J1|, we obtain

Now consider

'/gifi,j— i [ 5s] -

R
’/gifi,j_/gi/fi,j Szaz Cle= "7 || - ||gz\1+ — Z / lgi — gi o T"|dx
=1 niu
= ||fi,jllhCre” — Z Zoq/ lgi — gi o T*|dx
= s
< I fisl

Cie_CZ 4 ng 1||1+||fw||oo : Z llgi — gzOT It
T
9) < D'Cle= %7 ||gj 1|l + D'es

because ||fijllooc < ||gjlloc < D’ independent of j by Lemma 2.8, and the J; are
disjoint, and where

Cij :max{HgifgioTkHl :nggm%u}.

We have also used that Lemma 2.7 implies ||g;][1 < ||gj—1||1-
By Lemma 2.15,

> iy < Dlgi-lh

>3

for a constant D independent of j. Combining this and equation (9), we get

(10) > /gifi,j —/gi/fi,j

i>u+4v
for some D > 0 independent of j.

< Dllgj-1lh
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Then we have

‘/gigj_/gi/gj‘
< ‘/gigj_/gifi,j +‘/gifi7j—/9i/fi,j
< Mlgillsllgj — fijlla +‘/9¢fi,j _/gi/fi,j
< K”T%ng—ﬂh%-‘/gifi,j _/gi/fi,j

for some K" independent of j. The last inequality uses: Lemma 2.8 to bound | g/
and (8) to bound ||f;; — ¢;|l1. Summing the above expression over the relevant ¢
and using equation (10), we get

Afof s fufs

+ llgilloll fii — il

+K"277 ||gj-1lh

> |[o9- [ o[ 5] <D gl
i>u+4v
for a constant D" independent of j, as desired. This completes the proof. ([

2.3. Abstract setting: Proof of Proposition 2.6. We prove Proposition 2.6
below. First, we introduce some notation.

Let H; be as in Proposition 2.6. Recall that these nonnegative random variables
satisfy the following criteria for all 4:
(HL) [[Hilloo < Ch
(H2) 251 JHi =00
(H3) X572 | [ Hilly — [ H; [ Hj| < Ca|Hiall1.
From (H1) it is immediate that ||H;||; < C;.
Let F; = H; — f H;. Observe that F; satisfies the following for all i:
(F1) [Fi=0
(F2) |5l < | Hill < Cr
(F3) >, | [ FiFj| < Caol|Hizalx
Again, it is easy to see that | F;||1 < 2||H;]1.

Let mo = 0 and define my, inductively by my4+; = min{i : Z;:mk“’l | Hjll1 > 1}
Condition (H2) guarantees the existence of my, for all k. From this definition, and
from the fact, noted above, that | H;|l1 < C for all 4, we have that

ME41

(11) 1< Y |[Hifi <G+ 1.

1=mr+1
For the proof of Proposition 2.6 we use the following two classical results:

Lemma 2.21. (Chebyshev’s inequality) Let R be a random variable with [ Rdp =0
2
and finite variance. Then p({w: R(w) > c¢}) < %.

Lemma 2.22. (Borel-Cantelli) If Ay, ... are m-measurable sets and Y ;- m(A;) <
oo then m({x : x € A; for infinitely many i}) = 0.
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We will prove that

N
L F;
(12) lim M =0
N=voo 5750, [ H;
for a.e. x, which implies Proposition 2.6. Indeed (12) implies that
N N N
I Zi:1 H;(x) — 1 21':1 Fi(x) Zi:l sz _
im =% ——— = lim N T =1.
Nooo 30 JHy  Nooo Tl [Hy o 3o, [H,
Our proof is in two steps. First, we prove that (12) holds along the subsequence
{mnz}Nen.

Lemma 2.23.

Y Fi(z) _
N
for a.e. x.

Note that by (11), S7"A% ||H;|l1 > N?, so Lemma 2.23 implies Proposition 2.6
for this subsequence.

Proof. Consider, for any M, the mean-zero random variable >/ F;(x). We want
to bound its second moment.

mnpm 2 mar
/(ZF,(J:)) da::/ ZFi(x)2+2 Z Fi(z)Fj(z) | dz

1<i<j<mnm

First,

mm mm

> [ Fifde <3 1Bl Fil
i=1 i=1
ma

< Cl Z ||FzH1 < 201 Z HHlHl < 201(01 + 1)M.

i=1 i=1

using the Hoélder inequality, our bounds on ||F;||., and equation (11).

Second,
mapr—1 mar
‘2 Z /Fz(x)Fj(x)dx‘ <2 Z ‘ Z /Fl(x)Fj(:v)dx
1<i<j<mas i=1  j=it1

mn
< 2ZCQ||HZ;1H1 < 202(01 + 1)M
i=1
using property (F3) and equation (11).
We conclude that [(3 7" Fi(z))%dz < CM for some positive constant C' and
all M.
Now, by Chebyshev, for each N and any ¢ > 0,
™2 S A2 ~
CN C
. 2 —
m({x ‘ Z Fl(x)’ >JN }) < 2N = 2NT
i=1
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Let Ay = {x : |>/"N° Fy(x)| > 6N?}. By the above, this sequence of sets has
summable measure, so by Borel-Cantelli, for almost all x,

lim sup [2=i=1_Fi(@)]

=0
N—o00 N2

proving the lemma. O
We are now ready to prove Proposition 2.6.

Proof of Proposition 2.6. We want to show

Y )
TLOOZAIH -0

Choose N so that my2 <7 < m(yy1)2. Again using (11),

‘z ‘zw @] [Simen F@)|

N2

Therefore, using Lemma 2.23, it is sufficient to prove that for almost every =z,

s
. Zi:mNz-‘rl Fi(x)
lim max 5 =
N—ocompy2<r<m(y,q)2 N

Recalling the definition of F;, we need to consider

Z::mN2+1 H;(z) — || Hillx
N2 '

The proof follows an argument similar to Lemma 2.23. For any L < m(yy1)2,
using the bounds on ||F;||. and equation (11), one has f(ziLszz-H Fy(x))%dz <

CN. Chebyshev’s inequality implies

m({x:‘ ZL: Fl(x)‘ >5N2}) < 5§]Z¥4.

i:mN2+1

This is summable, so applying Borel-Cantelli as before, the set of x which do not
have the desired convergence property has measure zero.

O

Remark 2.24. Note that condition (H3) can be replaced by the following slightly
weaker condition, which is all that is used in the proof of Proposition 2.6:

(H3'): There exists some constant Cy such that for all N,

ZZ/HH & /j<022||H||1

=1 j=1+1

When we use Proposition 2.6 in the proof of Proposition 3.2, we will use (H3') in
place of (H3).
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2.4. Controlling the omitted terms. We now turn our attention to
2 j¢ulng.2ns) XB(%W)(T%), that is, the terms omitted in our consideration of g;.

Recall that §;(z) = 27;217;1 XB(%’Tj)(zj), where we understand that 3; = 0 if
n;411 = 2n;. Notice that it is possible that 8; = 0 for many i. As we will see below,
the assumptions on 7" in Theorem 2.3 will imply that for most i, 5; contributes
little to the sum we are considering. This will enable us to prove the main result

of this section:

Proposition 2.25. Under the assumptions of Theorem 2.3, for any ¢ > 0 there
exists & > 0 so that if &g > £ > 0 then for almost every x we have Zf\;_ll Bi(x) <
62?:1\’1_1 2r; for all sufficiently large N. (N is allowed to depend on x.)

The first step is to prove a version of Lemma 2.8 for our current setting, a bound
on ||B;|lcc- We accomplish that in the following Lemma and Corollary. Recall that

_ Mg
Ajy1 = ——.

Uz

Lemma 2.26. If ||Ok|lc > max %, 15—0(25;1 lgill1) 3}, then there exists a constant
C > 0 such that ag41 > Ck3. C depends only on ry, the first term in our Khinchin
sequence.

Proof. Because {T'z}™' " is ep(ngy1) > %ﬂ = aiflni—separated, 1Bkllce <
2“’2“ NgTon, + 1, using the argument of Lemma 2.8. As for almost every z, S (x) >

% and ¢ is small, we can reformulate this bound as ||Bk||cc < Am’“%nkrgnk. Note,

in addition, that by our Khinchin condition, | g;|l1 > 2ngran, for all ¢ < k and so
k 2 2

(izi lgill)® = (k2ngran,)s.
Using that [|Bkllee < 4a’g+1nkr2nk, and by assumption, |[Bkllec >

k 2 2
2Tin lgill)s > 2 (k2nkran,)s,

4 10 2
gakﬂnkmnk > z(k?nkTan) 3

and so
1,2
apt+1(ngran,)® > k3.

Using this inequality and the fact that the Khinchin condition implies that ngra,, <

1
92\ %
2
ag41 > () ks,
1

§T1a
proving the Lemma. O

Corollary 2.27. For almost every xz, for all but finitely many k, Br(z) <
k 2
max{12, 10(5* | lg.l)3 ).

Proof. First, by our assumptions that a; < k3 for all but finitely many k, we have

4 :
that for such k, ||Bk(x)]1 < ;:higZ(k) 2nyroiy,. By the Khinchin condition on

{r;} this is O(log(k)niran, ). Recall that in the proof of Lemma 2.26, we saw that
(i lgil® > (kniran, )t
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We claim that for such k,

A ({x s Br(x) > max{l Z lgill1) }) (k)iék)) )

Indeed, using the estimates noted in the previous paragraph,

({x Ba anm ) < g o

?O(knk’l"gnk)

o <log(k)(:§r2nk)é> 0 <lo§ék)) |

The last step uses that {r;} is a Khinchine sequence and so nyra,, < 7.
By Lemma 2.26, for large k, the set of « for which S (z) has such large values
has positive measure only if aj > k2. But assumption (3) of Theorem 2.3 is that

2

, 18 oo, This implies the corollary via the Borel-Cantelli Lemma. [
kiap>k2 k3

The next step is the following probabilistic result, which is an analogue of Propo-
sition 2.6:

Lemma 2.28. Let K, : [0,1) — Rx¢ be a sequence of functions and Cn an in-
creasing, unbounded, positive sequence of real numbers Cx = o(N?3) satisfying the
following:
(K1) There exists some M > 0 such that Zfil | K;llx < Cn for all N > M
2

(K2) There exists Dy > 0 such that max;«n {K;(x)} < DO
(K3) There exists D1 > 0 such that 3, ;. n ([ Ki(z - [Ki [K;) <

D1C
Then for almost every x

N N
lim sup 2=t i@ = Tty 1Kl _
N—oo CN

Proof. Let R; = K; — [K;. Note that [|R;|ly < 2||K;|x so vazl IR |11
9Cy for N > M, that (K2) implies |Rillc < DoCJ, and that (K3) implies
Pi<icjen J RiR; < DlC%

We begin by computmg the variance of Zz 1 "R;. Because |Ri||2 < ||Rilx -
IR;||cc Wwe obtain Z HR 12 < 2DOC’§, usmg (K1) and (K2). Using (I,<3)’

2 1 cicjen | RiR; < 2D103 Therefore [(YN7! Ri(x))2dz < 2(Do + Dy)C§..
Fix any 6 > 0. By Chebyshev’s inequality,

Nl 2(Do + D
(13) m ({x : ; Rl(:E) > 50]\]}) < (5200—’_]1\,/31)

Recall that the Cpy are increasing and without bound. For any r, let
kr =min{N : Cy > r}. Note that Cy. > r by definition. In addition, since
(N+1)*=N*is O(N?) and Cy = o(N?), for sufficiently large N, Cy , < (N+1)*.
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Consider {z : Zfﬁirl Ri(x) > 6Cy, }. By (13)

kya—1

Z Ri(z) > 6Cy,,} | < .

since Cy,, > N 4, These measures form a summable series, so by the Borel-Cantelli

Lemma, for almost all x, Zfﬁ{rl Ri(z) > 0Cy,, > 6N* for only finitely many N.

Therefore, for almost all x,

kna 1
S Rita)| _

lim sup
N—o0 N4

This establishes the desired convergence along the sequence {kn+ — 1}.
We now need to consider the omitted terms. Consider

L k(N+1)4
(14) max Y Rix) < ) Ki(a).

kya<L<k 4, .
N (N+1) 7.:kN4 z:kN4

(The inequality holds as R; + ||K;|1 = K; > 0.) Again, we bound the Variance,
using (K1), (K2), and (K3). (K1) and (K2) imply 21(1?1)4 | K13 < DOC,;‘(N+1)4
With (K3), we get an upper bound on the variance of (14) of

(Do +2D0)C; | < (Do+2D)(N +2)")F = (Do +2D)(N +2)¥
for all N sufficiently large. At the last step we have used the fact that for sufficiently
large N, C 0 < (N + 2)%, which relies on the Cy = o(N?3) assumption.
By Chebyshev’s inequality
(Do + 2Dy )(N + 2)20/3
(0Ck s )?

m x: max Z Ri(z)| > 0Ck,
L<k(N+1)4 imhna
~ (Do +2Dy)(NV +2)*0/3
- 52N8
< 2(Dg + 2D;)N~4/3572

for sufficiently large N.

Therefore, by the Borel-Cantelli Lemma almost every x has
| sz‘::kw Ri(z)] > 0N* with L < Fk(n41)s only finitely many times. There-
fore, for any integer N, writing N = k,,,« + L with m the largest integer such that
ke < N, we get

|2, Rie)]

lim sup <29
N—soo Cn
for almost every z. Letting § — 0 finishes the proof. O

Lemma 2.29. Under the assumptions of Theorem 2.3, for any € > 0 there exists
& > 0 so that if & > € > 0 then

lim sup 72 18:1h

N—o0 ZnN 1

where the B;(x) = Bi(x,&) are calculated using nl(f) and a;(§).
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Proof. Let € > 0 be given. Fix some &; for which the assumptions of Theorem 2.3
hold. Let n; and & denote n;(£;) and ai(fl)

Notice that er(2n;11) = er(2a;411n;) >
any j < a;y1,

. Therefore, if a;41 < A, then for

2a; +1n

er(2jn;) > er(2a;41n;) > .570
I
where & = 2%. For any choice of £ < &, let n; = n;(§) and a} = a;(§). By the
choice of &y, whenever n) belongs to some [n;,n;4+1) where a;+1 < A, we have that
aj =2
We will choose A below. Once we have done so, fix £ less than £ = 5—1 and let
ug = max{j : n’; < ng}. Then

uy, 21 ng—1
E E Ti Z E T
j=1 i:n; i€[ng,ny41) and aj41<A

Indeed, by the end of the previous paragraph, for any ¢ € [nj,nj41) with aj11 < A,
i € [n},2n);) for some j.

By condition (2) of Theorem 2.3, if A is sufficiently large, the upper density of
{j: 3 € [27,29%1] with i ¢ U 1[n€,2ne)} is less than e. By the proof of Lemma
2.7, whenever i > j we have Zk 21_ rp < 22321—1
Sublemma 2.30. If {s;} is a sequence of positive real numbers so that s; < s; for
alli>j and > s; = 0o, and if € > 0, then for any U C N with upper density less
than € we have

ZiEUN §i

limsup —F"— < 2

N —o00 Zi:l S;

where Uy = U N1, N].

Proof. There exists M so that [Uy| < eN for all N > M. Given such an M, write
UN(M,0) as iy < iz < --- and inductively assign to each iy, € U N (M, 00) the
set of indices G;, = [(k — 1)[4] + 1,k[5]). Note that by our choice of M, each
G; C[1,7). Then ZleGi s > isi by our assumption on (s;). Therefore

N
(15) )LD SIS DEEI D
=1

i€eUN(M,N]leG; i€UN[M,N]

Since Y s; = 00, Clearly ]\}im % = 0. Therefore, (15) proves the desired
—00 i=1 51

result. (]

For the Bi(x) := B;(x,£) we have the bound
N-1 2711
DB Y > 2
i=1 JEUN_1 =2
where U = {j : Ji € [27,271] with i ¢ U°,[n),2n})}. Applying the Sublemma

i+l
with s; = i:zi Lory, completes the proof of the lemma. O

We are now ready to prove Proposition 2.25.
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Proof of Proposition 2.25. We prove the Proposition using Lemma 2.28, with K; =
B; and Cy = Z?:Nl_l 2r;. To apply it, let By (z) = min{,@k(x),C’k%}. By Corollary
2.27 we have that for almost every z, Bx(z) = By (z) for all but finitely many k
and so it is enough to prove Proposition 2.25 with 5y replaced by Bk Lemma
2.28 controls the difference between Zfil Bi(z) and Zfil ||Bs|l1 relative to Cn. By
Lemma 2.29 (and the fact that 8y (x) < B (x)), for any e > 0 there exists & so that
for all £, > £ > 0 we have the following control on vazl 11Bsl1:

S Gl

lim sup Py
N—o0 i=1 27’2'

b

and so by Lemma 2.28, lim sup w

N—oco Zz:Nl 27y
2.25, it suffices to check the conditions of Lemma 2.28 with K; = Bl and Cy =
Z?:Nlil 27‘Z‘.

That Cp is an increasing, unbounded, positive sequence is clear from its def-
inition. The assumption that a; < i3 for all but finitely many ¢ implies that
ny = O((N!)%). The Khinchin condition implies that r; < = for all i, so
Cy = O(logny) = O(log(N) = O(XN  logi) = o(XN,i) = o(N?) and so
C\ is certainly o(N3).

Condition (K1) follows from Lemma 2.29.

Condition (K2) follows immediately from the definition of B;.

The proof of condition (K3) follows the argument of Proposition 2.13; we sketch

the argument here, using similar notation. Let v = max({j} U {i : n; < Tn‘j+1 b

and v = d(2 — log,(£)) + ¢. (Note the slight difference in the definition of u.)

< €. Therefore, to prove Proposition

Step 1: We bound the sum over indices i satisfying j < ¢ < w. Following the
argument of Proposition 2.13 and replacing n, < -~ with n, < ——, we get
n njit1

S cicu S By < (14 2) 18511
We bound >3-, ;. [ Bi [ B; as follows. Note that Bj1,...Bu_1 are sums whose

terms have indices between 2n;,; and n,. This range of indices can be partitioned

Ny

into log, <2n '+1) intervals between successive powers of 2. Then, using Lemma 2.7
J

to bound the contribution of each portion of this sum between successive powers of
2 by [lgj+1ll, we get

~ ~ n
S I < 3 1851 < 18 1ogs (5o ) lasealh.
UZES]

j<i<u j<i<u

Note that [|gjy1ll1 < 2nj417n,,, and that, using the definition of u, -« <

Tonjt1
1

——. Therefore,
LEARSETES!

- ~ 1
5 W1l < 155kt () Gngrar) < 551

1 Tn.
J<i<u I 4
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Altogether, summing over j as well,

[ad;- [5 [ 5

for some constant C' > 0, which is a sufficient bound for this part of the double
sum.

>y

1<j<N j<i<u

< Y Cllglh < CCw

1<j<N

Step 2: For some constant K’ independent of j we can bound

N-1 N-1
5 = - 2
SRR ECE Y - ESND S LN EAES e
JH1<i<j+4v JH1<i<j+4v

o

using (K2) to bound ||5;||oc. Summing over all 1 < j < N gives a bound of K'C3,,
as desired.

Step 3: For the terms with indices u +4v < i < N, let b = %. We approximate

Bj by a function f; ;, constant on the elements of the partition by S; ;. We find
that

. 1 i .
(16) I\fi,j—5j||1§2aj+1njnb < K277 gillh and  [|fijlloe < [|Bjlloo-

v
We use here that as ||g;ll1 > 2njron; > njy17n,,, and ny4q > ﬁ (by our
J
definition of u), [lg;[l1 > [ > “2E

Applying Theorem 1.3 exactly as in Proposition 2.13 gives that for any n,-block
interval,

Nitu

5 .
’ Z XJ(zj) - XJ(Tj-T/)) < nHTuC1€_CZZT|J|
j=1

with C7,Cy independent of j. Hence, as before,

“{0 <k <niw (Trz € J}| — Mg J|‘ < n%Cle_C2FTu|J|.

Writing f; ; = ZZR:1 agx g, (x), we consider

’/Bz’fi,j —/Bi/fz‘,j

/BiXJZ - |Jl|/Bi

R
< Z Qg
=1
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as in Proposition 2.13. Again applying Lemma 2.14 with A = Bi, n = Nitu and

i—u .
§' = Cre~“2"7 | Jj|, we obtain

R iy
]/mm 6 [ £ <Y I B+ —— 3 [ 1B~ BioTHda
1=1 e =1 Y
nH»u
= || fillsCre =5 ||/31||1+f > Zaz 1Bi=BioT!de
T k=1 I=1

z+'u

< g Cre™ T [1Billy + [l figloo — ZH@ B o TH||y

i
Billr + 118l oo

zu

(17) < || fi,jll1Cre”

using the second statement of (16), where
&; =max{||B; — BioT*||; : 0< k < n%}

Using Lemma 2.7, we can bound [|3;]; and 8|1 (and thus ||3;]|; and ||3i]1) b
log(a;+1)]lg;ll1 and log(ai+1)||g;ll1, respectively. Because

1Bi() = Biy)ll < 1Bi(x) — Bi(y)]
for all 7, y, Lemma 2.16, » 0, 4,
summing (17) over the relevant indices and using (K2) to bound ||, gives

/@ﬂﬂl/@/ﬁu

( Z Cle 25" (log(ai+1)10g(aj+1))> ;112 + D'C{ g1

i>u+4v

¢.j < Dl|gj|l1 for some D independent of j. Then

i>u+4v

C’, and C’,Co, and D’ are independent of j.
A computation using a; < i*/3 for all but finitely many i shows that
N—1

i—u 1
> Clem % (log(ars) log(az 1))l 1F < L'
i>u+4v
for some L' > 0 independent of j. Indeed, since there exists

C" so that C'e CQFTu(log(i)) < 1 for all ¢ > C"log(log(j)) + 7,
Zi>u+4v C'e= %" (log(asy1) < C'log(j)log(log(j)). Considering separately the
cases that ||g;|l1 < m and [|g;|1 > m (which implies that C; > log(J)Q) we

have the claim.
/mm 6 [ fi

We have
5
Summing this over all 1 < j < N, we get a bound of LCR, for some L > 0
independent of j, as desired.

(18) < L'C{ + D'Cillgj -

1>u+4v
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From this point, the proof follows the proof of Proposition 2.13, combining es-
timates (16) and (18) with the bounds from Steps 1 and 2 exactly as before. This
completes (K3). O

We are now ready to complete the proof of Theorems 1.1 and 2.3.

Proof of Theorems 1.1 and 2.3. We want to show that, under our conditions on T’
and for almost every x,

M _
(19) fi 2= XEG ) (70)

M
M— .
> > =1 2r;

=1.

Applying Proposition 2.6 with H; = g; we have for almost all = that

N
(20) lim iz 9i(2) _
N=oo 3ty llgilla

Then, when M = 2ny — 1, we can decompose the numerator in equation (19) as
follows:

ST Xege @) BN i) + 2N Bula)

2nny—1 2ny—1
Do 2 Do 2

Proposition 2.25 tells us that for almost every =,

N-1
lim sup 721%1 Bll( z)
N—oo Z N

(21)

<e€

so the contribution of the §; terms to equation (21) is negligible for large N, and
they can be ignored:

. Z?Zﬁv_l XB(Lr) (T72)
> it T

= Jim ﬁ
N-voo 32n%

Note that for all NV,

N
23 !
Zj:l 2r;
Combining equations (20), (23) and (22) gives

QTLN—l ]

-1 XB(L,r)(TV)
lim sup ZJ ! 5 Bji’T’) <1.
N —o00 Zj:li] 27"j

On the other hand, by Lemma 2.29 using our second condition on 7', for any
& > 0 there exists some & > 0 so that, with g; defined using this &, we have

>y lgils
N=roo Zj:l 2rj

Using equations (24), (23) and (22) gives
2nN71 )
. 1,(T7x
lion inf 2= 2GS

2nny—1 -
N N 4
oo o1 2rj
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Letting § — 0, we have now established equation (19) along the sequence of
times {2nx — 1}. This is sufficient. By (K2) the contribution of any terms with
index in [2ny,nyy1) will be negligible for large N and all . The bound on g;(x)
in Lemma 2.8 tells us that for large N, the contribution of terms with index in
[PN+1,2nN4+1 — 1) will also be negligible. This completes the proof.

O

3. PROOF OF THEOREM 1.2

We now turn to the proof of Theorem 1.2. Recall that in this theorem the
assumption that « is badly approximable allows us to omit the Khinchin condi-
tion and consider a wider class of radius sequences {r;}. As in Section 2, we will
state and prove a generalization of Theorem 1.2 to the case of interval exchange
transformations. Using the notation developed in Section 2.1, this generalization
is:

Theorem 3.1. Let T be an IET satisfying the Keane condition so that there exists
o > 0 with er(n) > Z for all n. Then for any decreasing sequence {r;} with
divergent sum we have:

N )
lim Zj:l XB(%,rj)(T]x)

N
N— .
oo > =1 2r;

=1

for almost every x.

Let o be such that er(n) > ¢ for all n. If T' satisfies this for some o, we say it
is of constant type. Without loss of generality, we may assume o < 1.

For this section we adjust our definition of the g;. For some constant C' > 1
i1 .
(which we will choose later) let g;(x) = Z]Q:ci ! XB(4 ) (T ).

The proof we provide is complicated by the fact that without the Khinchin
condition on r; it is possible for ||g;|l1 > |/g;||1 for some j > i (in contrast to
Lemma 2.7). This difficulty is handled for most values of i by appealing directly
to Theorem 1.3. We must then show that the remaining indices, which are not
handled by our appeal to Theorem 1.3, make negligible contributions.

The outline of this section is as follows. We break up our indices into two
disjoint sets according to a (fixed, large) parameter M. Section 3.1 deals with
those times ¢ such that ir; < M. The proof in this section is similar to that in
Section 2 but simpler because we do not need to worry about the issues of Section
2.4. Then in Section 3.2 we treat the times ¢ such that ir; > M. We partition
them into a subset where we may apply Theorem 1.3 and its complement, whose
contributions we show are negligible. Lemma 3.6 accomplishes the partitioning,
Lemma 3.9 applies Theorem 1.3, and Corollary 3.8 controls the size of the blocks
where we can not apply Theorem 1.3. We note that the arguments in Section 3.1
work for any value of M. It is for the proofs in Section 3.2 that we have to choose
a sufficiently large value of M.

Throughout this section, in an abuse of notation, rc: denotes r ¢z .

3.1. ir; small. In this subsection we treat ir; < M.
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Proposition 3.2. Let C, M be given. Let E = {i :rci < 2} If Y. cp [9i = 00
then for almost every x,
N
m ZieEQi(l") .

~ =
N —o00 ZzEEfgl

We first state the appropriate version of approximate T-invariance for the g;, an
analogue of Lemma 2.15.

Lemma 3.3. For alll < 1,

4 -
max [lg; — gi o T"|1 < m—=C*gus.

k<Ca -1

Proof. Exactly as in the proof of Lemma 2.15, to bound ||g; — g; o T%||1 we need
to bound 8srci. It is easy to bound |gi|; > 2CH(C — 1V)reisr > 2CHC — V)res.
Letting s = C%, we get the desired results after a quick computation. (|

Proof of Proposition 3.2. Suppose that ZieEfgi = o0o0. Write £ = {a1 < as <
-+ }. The idea of the proof is to show that H; = g,, satisfy the conditions (H1),
(H2) and (H3') of Proposition 2.6 from which the result follows (see Remark 2.24).

Recall:
N—-1 N N—1
(H?)/)Z Z Z /HZHJ—/Hi/H] <Cg Z HH]”l
j=1

j=1 i=j+1
We replace (H3) with (H3') since we cannot appeal to Lemma 2.7.

By our assumption on r¢e; and Lemma 2.8 (see Remark 2.12) we have ||gq, [lco <
1+ 2Mo~! and so condition (H1) is satisfied.

Condition (H2) is one of our assumptions.

Condition (H3') follows from the proof of Proposition 2.13, but requires a few
modifications. C% play the role of n; and we let v} = max({j + 1} U {i : C% <
—L_1}). Let K be chosen for ¢ as in Lemma 2.20 and v’ = log.(K) + logs(29).
Di\;iding up our sum as before we have:

N N
Z ‘/gaigaj _/gaj/gai = Z |/gaigaj _/gaj/gai

i=j+1 jH1<i<u)

N
+ Z |/gaigaj _/ga,/ga]‘

i=j+1 or “3 <i§u3+4v’

N
+ Z |/gaiga]‘ _/gaj /gai

i>u; +4v’

Bounding the first sum by a constant multiple of | gq,[|1 follows the argument
of Proposition 2.13, Step 1. The argument requires only a bound of the type
er(n) > 2, which we have, and the argument to extend Lemma 2.8 as in the above
proof of (H1). After summing over 1 < j < N — 1, this portion of the sum satisfies
(H3).

Bounding the second term by a constant multiple of [|g,,[|1 is also a direct
application of Proposition 2.13, Step 2. It suffices to show that there exists C
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’ ’ -
so that [|ga;,,[lec + Z?;Z,M |ga;lloo < C. Because v’ is a constant, it suffices for
J

lga;|lco to be uniformly bounded, which follows from (H1). After summing over
1 < j < N — 1, this portion of the sum satisfies (H3').

The third sum requires the most care. Given 4, for each k > 4v’ let

bix =min{j : i =uj+k} and d;p =max{j:i=uj+k}
and set b; , = d; , = 0 if no u; equals i — k. With these definitions, all j between
b; , and d; j, have the same value of u}, namely uglk = u;m Let h;j = E?Z’gk Ja, -
Note that if b; , = d; , = 0, then h; ;, = 0.
First, we give a bound on ||h; k|| sc-

Sublemma 3.4. For all k, ||h; k|| co is uniformly bounded, independent of i and k,
by a constant depending only on C' and o.

Proof of Sublemma: We need only consider situations where b;;, and d;j; are
nonzero.

As i and k are fixed within this proof, to simplify notation below let us write
b="b;x, d=d;  and h = h; . Then

d d cutli_]
@)= ga@ =3 D X T2
I=b I=b j=C%
Following the argument of Lemma 2.8, we find that
d curtl_1 o
. Cab
Yo D Xpay(Te) <[5
I=b j=C% o o/Co
2C
<1+ —rge,C%
o
20 a, /
<14+ —rgaC “a
o
2C ay
= ]_ + 7710%0 Ub
o
2C 2C
<1+ —rcae =1+ —
g rcap g
using the definition of uj at the last step. This proves the Sublemma. (]

Let i > u; + 4v' be fixed, and write 7 = u; + k. We want to bound | [ g, hix —
f Ya; f hi k|. We continue to follow the argument of Step 3 of Proposition 2.13. Let

W =i— % and let S; ; be the set of discontinuities of T By Lemma 2.20, S;
K
[
We apply Lemma 2.17 as before to obtain f;, approximating h;jr. Then

1fiklle < NPikllt, 1fiklloo < i klloo, and with some short calculation,

K

Ca“’;' + %

is -dense.

K -
(25)  fur = higlh < 2070 = 200 < KO |lhilh

for some uniform K > 0. We have used the definition of u;, including the fact that

"> b bound ||h; k|1 > 2C%.k > 90 ik S 20"k (C-1)
uj > ik to boun || z’,kHl = % Tcabiykﬁ»l = i TCa“/J = Cau'»+1 .
J
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We apply Theorem 1.3 as before. For any C*-block interval J and any x,
{0 < k < G4 - Thg € JY| — CUwa| J|| < CUt/aCle 25| ]

where Cy = logcﬁ. Proceeding precisely as in Proposition 2.13 and the proof of

Proposition 2.25, we obtain

/gaifi,k: _/gai/fi,k

& = max{l|ga, — ga, 0 T : 0 < k < C%-r1},

_C.E
< | fikl1Cre™ 2] ga,

1+ 1 fikll oo ik

where

We apply Lemma 3.3 with @ = a;_4/4 and | = a;_; and obtain that ¢ <
%Caiikﬂ_aiil”gaifl"l < 617910_%”9111‘71“1' Therefore, using that ||fi,kH1 <

| fiklloo < |17 k]loo and [|ga,||cc are universally bounded,
. Ak N K
@) 1 [gudin— [gn [ il < Dre S g+ DoC g

We now follow the end of the proof of Proposition 2.13. The exponential decay
in equations (25) and (26) and the universal bound on ||gq, [leo allows us to show

that
N N-1
Z Z /galhz,k: _/gal/hz,k
k=1

N
<Y |9l
1=1 =1

It is straightforward to check that this implies (H3') with H; = g,,, as desired. O

3.2. ir; big. When ir; > M we want to use the next lemma, which requires M

sufficiently large:

Lemma 3.5. Let T be of constant type and C > 1. Then, uniformly in a € [0,1],
citi—1

o cit1 Z_
i, tmswp sup | | oy gy 2 X)) 1

Il
e

Proof. Fix € > 0. Fix C and a value of k to be chosen later. Because T is of
constant type, for any choice of k, for sufficiently large M (which depends on k),
any interval B(a, %) can be approximated up to an e proportion by C7~*-blocks
(of T), for j sufficiently large (independent of a). The remainder of the proof is
determining how large k needs to be.

We now choose n; = 3% in the statement of Theorem 1.3 with ¢ = o. By Theorem
1.3, by choosing @ large enough (given C, ¢ and {) we have that if n, is the largest
n; < Ci—*+Q and J is any C9~*-block we have

1 Ny ) i R
27 - (T'T z) — |J 4 for all z.
(27) m;xJ( x) —|J|| <e/4 forall z

Note that @@ may be chosen independent of k.
First, choose k so large that C7—*+@ < Ci+l — CJ. Let d = LMJ > 0.

[
Decompose the sum in the lemma into d sums over n, indices each, together with
a remainder sum of length < n,. Applying inequality (27) to the length-n, sums,
we obtain
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1 citl_ci
ci- 5
i Z ST ) = ||
d—1 (t+1)n,+C7 citt
07+1 Ci Z Z X (T'z) + Z xj(T'z) | = ||
{=0 i=fn,.+CJI i=dn,+CJ
9,1 (4 (e+1)n,+C7 -1 1 citlig
<X X @l Y )
£=0 " i=tn,.+Ci " i=dn,CI
2 € € 2
28 —d- + Tz < — 4 —.
(28) a1 dnrmaXZXJ W5+3

i=1

Similarly, let U be the subset of B(a, %) that is not made up of C?~* blocks.
It is at most 2 intervals. By the constant type assumption, we bound

citl_q

(29) > xu(T'z)| < (C7F = Co U+ 1
1=CJ

for all x, independent of a. Given any choice of k, we choose M large enough at
the begmnmg to make |U| < e=41 CJH , controlling the contribution of inequality (29).

The lemma now follows if we can choose k and M large enough to make equation
(28) less than e. This is clear as, for large j, by taking k large we can ensure n,. is
small compared with C7*t! — (Y, and therefore that d is large. This completes the
proof. O

The next lemma lets us split up the natural numbers into subsets where we
appeal to Proposition 3.2, subsets where we can apply Lemma 3.5 (see Lemma
3.9), and a small remaining piece that we show is negligible (see Corollary 3.8).

Throughout the remainder of this section C' > 1 should be thought of as very
close to 1. Define

M
Gepm = {j eEN:rgi1 > o and prg; < rch}

and
. M
BC,p,M =47J€ N\Gc,p,M Tt > W .

When p is very close to 1, G¢ ,,a is the set of indices where Cauchy condensation
(that is, replacing 7; with r¢;+1 for C7 < i < C9*1) is a mild change in the size of
radii.

Lemma 3.6. For any € > 0 and any p < 1, there exists C > 1 so that for any
non-increasing sequence {r;} C R*, we have

J+1 _ J )
. ZjeBC o iCITISN (C C)re
lim sup - ~
N—o0 Z T
i=1 "1

for all M > 2max{1,r;}.

<€
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. . . M
Proof. Let ¢ > 0 and p <1 be given. By assumption ry < 5.

Enumerate Be,p v = {b1,b2,...} in increasing order.

Claim: by, >nlogc( ) +logo(2) — 1.

Proof of claim: By definition of B¢, ar, each new b; decreases r¢; by a factor
of at least p. Since rge, < %, this implies that rge, < %p”fl. Therefore, using
again the definition of B¢,

M n
W S Tobn+1 S PTrcon < 7p .

Taking log. of both sides yields the claim.

Let Sy = (). Define Sy inductively by letting Sky1 be the d := E logc(%)—‘

largest indices in

k
{172,...bk+1}\ (BC,p,M U U Si> .

i=1
The claim above ensures that, for any choice of p if C' > 1 is small enough, such a
set exists.
To prove the Lemma, it clearly suffices to show that for all small enough C' > 1,
for all sufficiently large k, we have
citi—1

(30) €Y Y 2 > 2CHT = CP)rey

JESE i=CJ

First, we choose C' > 1 such that C < %. Write S = {u; > ug > -+ > ug}.
Then,

d cvitl_ d
> o> ZQrcuj+1C“J (C—1).
j=1 =C"i =

Suppose that m; > 0 of the b; lie in [ + 1,b;). Then, from the definition of
Be,par, w1 > (ll))mﬂ rov, and u; = bk j —m;. Applying this to the bound
above, we have

Zcz:c“i: 2n>z ( ) o OO (é)mj (©—1).

j=1 =C"i
Then, using the assumption C < ; and so (%)mﬂ'(é)mﬂ' > 1 and carrying out the
sum and using the definition of d, we find that

d c*itt—1

(31) ST 2m = 20 O (1= C7) = 2100, C (1= /p).

j=1 i=C"i
If we pick C' > 1 so that
€2rcn, CP (1 — \/p) > 27w, C (C' — 1)

(which is clearly possible) then inequality (31) shows that inequality (30) establishes
the lemma. g
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J+1_
To control chzcj !

sult.

XB(%M_)(T’%) where j € B¢c,, m we need the following re-

Lemma 3.7. Let T be an IET of constant type, {r;} nonincreasing. Then for all
x?
citl

) 27 ;i )
Z XB(%,m)(Tlx) ez (Cj—s-l C])+1

1=CJ
The proof of this Lemma is essentially the same as the proof of Lemma 2.8.

Corollary 3.8. For every e > 0 and p < 1 there exists C' so that for all x, and all
large enough M we have

cit1

N’ 1 )
ZjeBc,p,M Zi:cj XB(L,r:) (sz)

N \~Citi-1 <€
Zj:l i—ci 2T

for sufficiently large N'.

Proof. By Lemma 3.7, for all j,

citiog 9
TCci i
> Xpre(T'z) < UC CI(C —)res + 1.
i=CJ

Using this fact, for all x we have,
N’ CcIt—1 i N’ 2reg
ZjeBC,p a Zz ci  XB(3, )(T z) < ZjeBc oM “=0(C-1)+1
Cit1l_— 1 Citi_ 1 .
DRIND DR T DRIRD DR T
Note that for j € Be,p ar, we have Clrg; > CMP. Therefore, for M sufficiently large
(say, > (C —1)71),we have

ZN’ 1 o PP 2ol 03 (C - 1)

JEBC,p,Mm j€Bc, p M O
CitI-T,) Citi-T,
Z Zz Ci LK Z Zz Ci LK

;'VGIBC 0. M QT'-"cj cl(C-1
Fi_
, S ST e
with N = CN'+1 — 1 to this and obtain that for all sufficiently large M and N’,
’ 2r .
Z.;VEBC,;O,ZM f] C7(C-1)

/ cit+l_1
Z;'vzl Yilcs 2

Therefore, it is sufficient to bound . We apply Lemma 3.6

is bounded by some fixed multiple of €, proving the result.

O

Lemma 3. 9 For any € > 0 and C > 1 there exists My > 1 so that if M > My

and p =1 — <2 then for all sufficiently large j € Gc,p m and all x,
J+1 .
Zfzcj XB(%, i)(Tlx)
i ell—el+6.

Zi:cj 2r;
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Proof. Fix € > 0. We may assume that € < % and that o < 1. First, note that to
prove the Lemma it is sufficient to show that for sufficiently large j € G¢,p 0,

C7+1
sup,, Z =CJ XB(z,rl)(T .’17)

<1l+e.
Cit+1 —
info 322 ci XB(2 ) (T72)

By Lemma 3.5 we have that if M is large enough

Cit1

Supz Zz Ci XB( T‘CJ+1)(T

Cit+1 .
infe 0 0 X3 ) (T72)

iz)

<1l+eg

and so it suffices to show that for any € > 0,

cit1

SUP, D i_cy XB(2,ri)\B(%,7'CJ+1)(Tix) <
Cit+1 i
lnf Z =Ci XB(Qv’cH—l)(T )

(32)

First, we bound the numerator of (32). Consider B(%,7;)\B(%,r¢i+1) fori > CJ.
It consists of two intervals of size at most (1 — p)res since j € Ge,pmr. By Lemma
3.7 and our choice of p,

citl . .
; (C7+t - 07)
Slip Z XB(%,ri)\B(%,ch+1)(T ) <2+42(1-p)rei2———
i=CJ
€2 . .
(33) =2+ 527@(0]“ — 9.

To bound the denominator of (32) below we appeal to Lemma 3.5. First, let M|
be so large that for all a € [0,1] and all z,

cIt+1 M
. (T'z) > (1 - ) 20 (ot
Z:ZC;J XB(“’ cﬁ'@:l )( 33) - CJ+1 ( )

for sufficiently large j (independent of a). Let My = max{3M0,46_IC( - 1)L
We consider j € Gg,p,pr with M > My, rej+ > 309+1 Part1t10n B(2,7“CJ+1) into

A > 3 intervals of size C]]\/J[rl and one interval of size < CJ . Let B be the union of
the A intervals. Applying Lemma 3.5 as above to each of the A intervals forming B
we obtain, for sufficiently large j € G p,m,

cIitt citl
Z XB(%vTcHl)(TZx) > Z XB(TzLE)
i=c7 i—C

€\ \2Mo i1 e
> (1-3) G (@™ =)
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Further, because (A + 1)2,Jl+61 > 2rcj+1 this is

€ A ) )
R I (A (O o),
> <1 3)(}\+1>2ch+ (O C)

(1-3) (Z) e (CIH — ),

1 . .
52ch+1 (CJ_H — OJ)

(34)

v

since € < 1.
Combining inequalties (33) and (34),

cit+1

SUD, D ici XB(4r\B(hreyin) (L ‘) 14 ¢ rCJ (CITE — C9)
infe S50 XB(hrgyen (') 27”0J+1(C”1—Cj)

< & using our choice of My > 4¢ 'C(C — 1)~1.  Also,

NOW7 Toit1 (Cj+1fcj)

N <A
% < % < %ez < g using the fact that j € G¢,p,a, our choice of
p, and the fact that € < § This completes the proof. (I

We note the following facts about the results above. First, p does not depend
on C and so we may choose C for Lemma 3.6 to hold. Also our only requirement
on M in Corollary 3.8 and Lemma 3.9 is that it is large enough. So given p, C' we
may choose (a possibly larger) M so that Corollary 3.8 and Lemma 3.9 hold.

We are now ready to prove Theorems 1.2 and 3.1.

Proof of Theorems 1.2 and 3.1. It suffices to show that for all § > 0 there exists
C > 1 so that

citl
D DD Driiy XB<2,u>T
lﬁlglof o, >1-94
Z] 1 Zz C7
and -
N C.?
= 1=C" X T T z
limsupzj 12i=c 5(g.r) <1+06.

N— o0 Z] 1 ZCJZ'E 2’1"1

Choose € = g and p =1 — EZT”. Following Corollary 3.8, choose C' for this p and

€. Following Lemma 3.9 and Corollary 3.8, choose M for these p,C,e. Then by
Lemma 3.9 we have

N C]+1
Jimn sup Zjecc_ﬂ,M Y icci XB(4r)(T" ‘r) . s
N Ccitt
N=roo Zjchﬁpr Zi:ci 2Ti 2
and .
N ci .
limi ijch),,ﬂM dicci XB(4 ) (T'2) o1 0
}\gglglo N Citt 9’
Zjch,p,M Zi:c.i 2r;
Proposition 3.2 implies
N CJ+1
li Zjﬁz(chMUBcpM)Z =Ci XB( n)( ) 1
Ngnoo N Citt L9 -
ZJ&(GC,JMUBC,,M)Z T
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for almost every z. By Corollary 3.8

N cit+1 .
ZjeBc,p,M Yici XB(%,ri)(sz) < 0
2

lim sup
CN+1
N—oco Zi:l 2r;

for all x, which completes the proof. ([

4. QUANTITATIVE BOSHERNITZAN’S CRITERION

This section uses Appendix A. In that Appendix, we recall that T : [0,1) — [0,1)
is measure conjugate to a subshift S : X — X of the full shift on d symbols. In
this section we use both of these (measure-theoretically) equivalent descriptions of
the dynamics for various proofs, as suits our purposes.

We want to prove a quantitative version of the following:

Theorem 4.1 (Boshernitzan [3]). Let S : X — X be the left shift acting minimally
on a symbolic dynamical system. Let p be an S-invariant measure. Let €, be the u
measure of the smallest cylinder set of length n. If there exists a constant ¢ such
that for infinitely many n, €, > =, then S is p-uniquely ergodic.

An analogue of this result was proved for IETs by Veech [17], in which case the
invariant/ergodic measure is Lebesgue. Masur [15] established the analogous, in
fact stronger, result for flows on flat surfaces.

We will prove Theorem 1.3, stated in the introduction for 7', for the shift S
measure conjugate to 1" described in Appendix A:

Theorem 4.2. Let S : X — X be the symbolic system for a minimal IET, v be an
invariant measure and €, be the smallest pi-measure of an n-cylinder of S. Assume
there exists some ¢ > 0 and a sequence (n;) with n; > 10n;_; such that €,, > ni for
all i. Let w be a word of length n; and let x,, be the characteristic function for the
cylinder set defined by w. Then there exist positive constants Cq, Ca, ¢ depending
only on ¢ such that for all x,2' € X we have

1 Titq+L ) )
D> Xwl(872) = xu(S72))| < Crem % p(w)
Nitg+l | S5

for all L € N. Here, u(w) denotes the measure of the cylinder set defined by w.

We note that in Theorem 1.3 we assumed n; > 2n;_1. To see that Theorem 1.3
and Theorem 4.2 are equivalent, we can pass to subsequences of the form ng; .

This is a quantitative version of Boshernitzan’s criterion because it tells how
quickly any orbit equidistributes. Quantitative ergodicity statements for IETs and
flows have been profitably studied with deep results in [7], [18] and [1].

The next proposition is similar to results used in [17]. It provides a construction
of a set of Rokhlin towers describing the dynamics of 7" which will be useful in the
rest of our proof. Specifically, conditions (1), (2) and (3) define a set of Rokhlin
towers {(Jq, mq)} decomposing [0, 1). The rest of the proposition gives quantitative
control over the number of towers ¢, the measures of the bases of the towers (and
so the levels) |J,|, and the heights m, of the towers.
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Proposition 4.3. Ifer(2n) > then there exist intervals Jy,...,J; and numbers

mi,...,mg So that

<
2n

Proof. Recall that Ps, is the partition of [0,1) by the discontinuities of T*. We
denote Pg, by Py. If I € Py, then I has the form [T~"6;, T "23), where 0; are
discontinuities of T"and 0 < n; <k —1, and Tk| 7 is continuous.

We will construct the Rokhlin towers by drawing the J,’s from the collections
P, and Ps,. This will ensure that (3) and (4) are satisfied. Once m, are chosen
satisfying (6), [0,1) is the union of at least n copies of each J,. Since |J,| >
er(2n) > 5~ the m, copies of J, cover a subset of [0,1) of measure at least 5.
Once the disjointness described in (1) is assured, this implies that there are at most
2 of the J,’s, proving (5).

The rest of our proof uses the following simple claim:

Claim: If I, € Py, then ThI, N T2 1y # 0 for some 0 < I} < Iy < k implies
ThI, CThI,.

Proof of claim: We may assume [y < [, and then it is sufficient to prove the result
for I; = 0 by applying 7"

As noted above Iy = [T~™§;, T~ "24§3) for some 0 < n; < k — 1. Suppose that
LNT"1, # () for some 0 < [ < k. Unless I; C T'21,, we have T'2(T~":6;) € Int(I,)
for either i = 1 or 2. Then Int(T™!2I;) contains the discontinuity &;. But
n; —ls <k —2 and so T’“|11 is not continuous, a contradiction. O

Let Ji,...,J, be a maximal subset of P, so that T%(J,) NT7(Jy) = 0 for all
(i,a) # (4,b) with 0 < 4,5 < n. (The claim applied with I; = I, an element of
P,, of minimal length, ensures that such a subset exists. Indeed continuity follows
from the fact that I; is an element of P, and disjointness follows from Lemma 2.9.)
Let mg =nfora=1,...r and V; = U,_, U"} T J,.

If V1 = [0,1) we are done. Otherwise split V;° into two sets:

Ua={x:3i <0< jsothat T2, T9x € V; and j —i < n}
Ug=(VhuUy)“.

We now show that Uy and Up are both unions of elements of P»,,. For each
x € Uy, consider the element I of P, so that x € I. We have T*INJ, # () for some
0 <i<nandsome 1< a<r. Moreover, T~¢(T*I N.J,) is a union of elements in
P5,,. Therefore elements of Py, are either contained in U4 or disjoint from it. Since
elements of Py, are clearly either contained in V; or disjoint from it, similarly Upg
is a union of elements of Ps,,.

Now we show how to cover Ug as in the statement of the proposition. Let
Ii, ..., I/, be the elements of P, which are contained in Up and such that 7711/ N
Vi # 0. By construction these also have T-1I/NU"_, T""1J, # (). By the claim, this
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implies for each i there exists a so that T—'I/ C T"'J,. Now if T™ I!N\(Ul_,J,) #
() for some m* < 2n (which is necessarily at least n) we add I/ to our collection {J,},
set the corresponding m, = m*, and we add UZ’FLZ*OATEIZ( to V1. Otherwise we add I}
to the {J,}, set m, = n, and add U;’;OlTZIZ( to V1. We call such an I} recalcitrant.
Performing this for all of the I/ we obtain Vo. We now consider I7, ..., I/ so that
I7 are the elements of P, whose pre-images are contained in 7™(I}) for some

recalcitrant Ij. As before we add the I7 to {J,} and, if T I C Up_yJ, for some
m* < 2n, which is necessarily at least n, we set m, = m*. Otherwise we set
mg = n. We add all the U™ "' T*I” to V3. In this way we obtain V3. We repeat
this procedure until we cannot continue, having obtained V. Observe Vj is covered
by a union of towers that satisty (1), (3), (4), (5) and (6) and covers all of V; and

Up. Therefore anything missing is in U4. We now treat these points.

Now we show how to cover U, as in the statement of the proposition. If x € V,¢
then there exist I € Py, and i,£ € N so that x € T°I, T*I c J, for some a €
{1,.,7},0<i<{<mnand T'INV; # 0. As above, the claim implies that
T—'T Cc Vi. Let I, ..., I, be these I and j; be so that T7%I; C I, for some a. If
I, ..., I, are the I; that orbit into J,, we refine U= T%J, to be (UL, UJ " T¢I, U
(UpZd T(J, \ (UL, T 1;))). Consider .J, partitioned into elements of Py,. By the
claim, U;-]:lTji I; is a union of these partition elements and so its complement is as
well. Therefore, replacing J, with I, ... I, (with corresponding m, = j; +n) and
with the elements of .J, \ (U{_,771;) (with corresponding m, = n) and using the
(Ja,me) defined in the argument above, we obtain in total a collection {(J,, m4)}
satisfying condition (2) in addition to the previously ensured (1), (3), (4), (5) and
(6). This completes the proof. O

We also need the following results on symbolic systems:
Lemma 4.4. Let S": X' — X' be a symbolic system such that e; > " and €1 > 'rCT//
for a sequence n); such that n; > 10n;_,. Without loss of generality we assume that
mﬂn;}. That is, C; is the set of all x

327
so that the symbol 1 occurs at least a proportion A of the time in the first n

¢ <1 Let G = fa: Y00 xa(Sr) > ¢

2i
32¢

symbols of x. Then u(Cit11) > min{l, u(C;) 31/2 1

The proof of this lemma is similar to [3].

Proof. We first show p(Cii1 \ C;) > 81—%/ if Cf ., #0.

Let u be a word of length nj,, appearing in our system with the fewest occur-
rences of 1; let v be a word of length nj_ _; with the most occurrences of 1. By our

. 72441 .
assumption that Cf,, # 0, there are fewer than Sz—nj,; occurrences of 1 in w.
Since €; > ¢/, there are at least ¢'nj, occurrences of 1 in v. Because §" : X’ — X'
is minimal, there is a word vwv = ag, ..., a,, occuring in X’'. Let j be the maxi-
. o /243,
mal index so that a; := aj, ..., a;1n;  has fewer than Smmrng, , occurrences of the
symbol 1; such an index exists by the remarks above. The cylinder set defined by
O = Qg ey Qpn), 1 is contained in C;14 for all £ > j.
We now estimate the proportion of length-n; subwords of a; which give cylinder
. 12043 I .
sets in Cf. There are fewer than $5rnj,; occurrences of 1 in «j, each of which
. . 2
occurs in at most n; of its length-n; subwords. Therefore, there are at most §5n;,
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length-n) subwords (entirely) contained in «; that give cylinders in C;. There
are n;,; — n; + 1 total length-n; subwords in a;. Therefore, we have at least
nj g —np+1— %n; 41 length-n} subwords of «; which give cylinders in C7. All
but perhaps the first length-n 41 cylinder are in C;y;. Using our assumption on
€ny.1, this gives

012 4
C. C.) > A ¥ AN — oY) R
,LL( i+1 \ 1) = <nz+1 n; 32 it n;+1

Recalling that nj,; > 10n;, the bound u(Ciy1 \ C;) > % follows easily.

Now we show that u(C; \ Ciy1) < %. Let
hi: C; = N by h;(x) = min{n > 0: S"z € C;}.
By the Kac Lemma (see for example [11, Theorem 3.6]) [, hidp = pu(X) = 1. Let

’

Uy = Z;L;J[)l_n’ Xc, (S z) and suppose that = € C; \ C;41. Then

12i+3 12641\ — L 2
Up < iy [ e =S
T = 39i+1 i+1 39 - 32 i+1-

72i+3 .
Indeed, there are fewer than $5=rnj,; occurrences of 1 in the word of length nj
. . . o . . . 72i+1
corresponding to a point in C; 11, each word giving a point in C; has at least “55 n;

occurrences of 1, and each occurrence of 1 appears in at most n} different length-n/

3
words.

/2 _ X
Therefore, for each z € C; \ Ci+1, we have Efzon”l 1hi(5’|jcix) >
doitohi(S'[,®) > niyy — nj, where (as in Lemma 2.18) S'|4 denotes the first
return map of S’ to A. Then

2

2 2 i1l 4
@n;+1 = / Z hi(S/\jcix)dM

/2

ﬁn;+171 .
> / ha(S'[2, @) dp
Ci\Cit1 =0

2 (”QH —ni)u(Ci \ Cigr).

Then we have p(C; \ Ciy1) < (nf, —nf)~'5onl, . Since nj,; > 10n; a short

From these two bounds it follows that u(Cii1) > u(C;) — % + 8¢ > u(Ch) +
3¢
. g
1

As a corollary we obtain:

Corollary 4.5. For any minimal symbolic system S’ : X' — X' with 1 > ¢,
€n; > 77 for a sequence nj such that n; > 10n;_,, there exists an integer ¢' and a
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number § > 0 (each depending only on ') so that for any symbol a, any x € X'
satisfies

i
ZXa(Sliw) > om
i=1
for alll > q'. That is, at least a proportion & of the first nj symbols of x are a’s.

Proof. Let ¢’ be such that q’% > 1. Let § = C/;;Jl. For I > ¢’ and any =z,
each length—nf], subword of the first nj letters of = has at least a proportion § of
the symbol a, by Lemma 4.4 (applied for a instead of 1). This establishes the

Corollary. 0

We now describe a symbolic system describing the trajectory of points through
the Rokhlin towers of Proposition 4.3.

For any n, consider R,, = {(Ja, mq)}, the set of Rokhlin towers given by Proposi-
tion 4.3 for this value of n. To a point = € [0, 1) we assign the coding .. . ag, a1, as, ...
ifx e T’“Ja0 for some 0 < k < my,, Trao—ky € Jag, Tao—k+nay g ¢ Jay, and so on.
In other words, x begins in the ag tower, and subsequently visits the towers with
indices a1, as, .. ..

Let X, be the set of such codings and S}, : X, — X/, the corresponding symbolic
system. This system is topologically transitive since T is, and it is an easy exercise
to check that it satisfies €, > % for ¢ = 5. Apply Corollary 4.5 to this shift, using
n} = 10, obtaining ¢ and ¢ which depend only on ¢ (and not on n). Without loss
of generality, we assume § < %

Proof of Theorem 1.3 and Theorem 4.2. Let an integer i and a word w of length
n; be given. We want to show that

Nitg+L
1

sup Xeo (S72) = xw(872")| < Cre™F
p(w) z,z’ Ni+G+L Z

(35)
j=1

for C1,C5,G > 0 depending only on ¢. We show this by first bounding L = 0
case above with a bound depending only on ¢. Then we show that there is some
r > 0 depending only on ¢ such that the left-hand side of (35) decays by a constant
factor ¢ < 1 depending only on ¢ for every increase of r in L. These two facts will
accomplish the proof.

L = 0: We claim that there exist constants ¢,b, B > 0 depending only on ¢ with
G > d(2 —logy £), so that for all x,

(36) bu) < S vl S7) < Bu(w).

From these bounds it will follow that for all x, 2/,

Nitg
1

D Xuwl(872) = xu(872')| < (B = b)u(w)

j=1

Nitq
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as desired for the L = 0 case. The lower bound will be used below in our proof of
the exponential decay.

We prove the upper bound in equation (36), with B = %7 by an argument
similar to that in Lemma 2.8. Partition the interval corresponding to w into a
minimal collection of subintervals of size < €,,. Since u(w) > €,,, there are at most
f@l < 2%“:) of these. Ase,, > =, thisis < 21(w)n;. These subintervals are
hit at most once every n; iterates, so

] ita ‘
S7x) < —p(w).
3 xuls's) < Sutw)

[\V]

Nit+g
The choice of § is not relevant for this part of the argument.

i-+log,o 2+ Note that

n > 3—8711-. Consider the set of towers R given by Proposition 4.3. Since the union
of the towers is [0, 1), there exists some a* such that

For the lower bound in (36) we do the following. Let 2 = n

Ma*_1 i Ma*—1 i ¢

P2 800) 1) 2 p()p(UL ') = plw)ma () 2 () 5

By construction, p(S%J,) < % and the S*J,+ are disjoint for 0 < i < mg- so at

least % = ap(w)§ > §mq-p(w) of them intersect w. The choice of 7 and the

fact that p(w) > 55, imply §mg-p(w) > 5. At most two of these intersect w in its
boundary since w codes for an interval in [0,1). Therefore

{0 <i<me —1: 80 Cw}| 2 Sma-p(w).

Apply Corollary 4.5 to the symbolic coding S}, : X/, — X/, obtaining ¢’ and
d so that for all I > ¢/, at least a proportion ¢ of any word of length n] in X' is
the symbol a*. Since the symbols in X, correspond to words in X of length < 27,
every word of length 27(n], +2) in X contains a subword corresponding to a word
of length n’q, in X/ which accounts for at least a third of its length. Therefore, for
all z

Nipg—1
1 & ; 1_c
Xw(S7x) > 0= p(w
LS i s Yo

where ¢ = log; 2 + ¢’ + 1. We have the lower bound of (36) with b = % and ¢
depending only on ¢ by Corollary 4.5.

Ezponential decay: We want to show that for all z, 2’, and for all ¢ and L, there
exists some r > 0 and ¢ < 1 such that

1 MNit+g+L ) ) L
(37) 37 xwl(82) = xu(872)| < pw)(B — b)CL,
Mitg+Ll | 15

We will do this by showing that there exists r so that for words formed by
completely traversing Ry, +r+r the maximum and minimum occurrences of w differ
by less than words formed by completely traversing R,,+r. We split the general
word in words formed by completely traversing R, yk|L) @S k varies and a tiny
leftover piece. Then a simple sublemma completes the proof.
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Let u; be the finite word in the X ,.,; coding which records the towers in
Roniyqsr traversed by x over the orbit segment indexed by [1, 7444 Lr], omitting
the first and last symbols, which correspond to towers which x may not fully tra-
verse. We choose r so that 13r < 2; note that it depends only on the § given by
Corollary 4.5, and hence only on c.

Consider the towers in R, , ., , whose corresponding words in the coding X have
the maximal and minimal frequencies of w as subwords. Denote these frequencies
by pu(w)Zr and p(w)y, respectively. By the argument using Corollary 4.5 which
gave the lower bound of (36) above, £, > b > 0 where b depends only on c.

Now we apply Corollary 4.5 to the coding X, rair> B8 defined in paragraphs
between Corollary 4.5 and the start of the proof. In every word in X;L7+Q+L7 each
symbol appears with frequency > ¢ for any subword of length at least ¢’. In
particular, this is true of the symbols A and a respectively representing the towers
in which w appears with frequencies p(w)Zr, and p(w)ér. Let us further assume

that » > ¢/, a choice again depending only on c.

Now for our word u, € X, rerL A appears with frequency > § and a appears
with frequency > §. Therefore, the frequency of w for x is between du(w)Zr + (1 —
Np(w)ér and (1—6)u(w)Zg, +5u(w)§L (up to the small error coming from omitting
the initial and final symbols in forming w,). The frequency of w for x thus lies in a
range of size bounded above by (1 — 20)u(w)(Er — &1). Letting ( = 1 — 2§ proves

(37) for those indices j covered by the word u,. (Our eventual ¢ will be different.)

Recall that for any € X we have written the orbit of x over the indices
[1,744+L+r] as a prefix of length < 2n;444 1, a core piece during which the orbit
fully traverses towers from R, ., , and then a suffix of length < 2n;,4,7. The
work above shows that range of frequencies with which core piece of the orbit hits
the cylinder set defined by w decays by the factor ( < 1 each time L increases by
1. To complete the proof we need to incorporate the prefix and suffix.

Note that the prefix and suffix take up a proportion < % of the indices in
[1, 744+ L+r]. Decompose the prefix and suffix into core orbit segments fully travers-

ing towers from R, .., _,, leaving a second set of prefix and suffix Segments each
of length at most n;444r1—r. These segments take up a proportion <2 - 102r of the
indices in [1, 74441+ and the range of frequencies with which w appears in these
segments is bounded above by p(w)(Ep_, — &—r) < Cu(w)(Er — &) Proceeding
in this way, we decompose the original suffix and prefix into segments taking up

a proportion < 2% . 1okr of the indices in [1, ;444 r+-] in which w appears with a
frequency range < p(w)(Ep—pr — &1—kr) < (W) (Er—(h—1)r — EL—(k—1)r)-
Therefore, We can bound the range of frequencies for the entire prefix and suffix

by u(w) Zk 1 10,67 (Z2p—kr — &L —kr)- Then the total frequency of w over the indices
[1,744+L+r] lies in a range of size bounded above by

"
(38) (1= 20)u(w)(Ep — &n) + p(w) > W(ELfk)’r’ —&L—kr)-
k=1

To prove exponential decay we use the following fact:
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Sublemma 4.6. If 0 < a,v < 1 satisfy o +ya~' < 1 and (x;) is a sequence of
positive numbers so that x;11 < ax; + ch: YRz ;i for all j, then x; < zo(a +
ya~)7 for all j.

Proof of Sublemma. The proof is by induction. The j = 0 case is immediate. Then

j—1 j—1
Tjp1 < axj + Z’ykxj_k < ala+ya t)zy + Z V(a4 yam ) Ry,
k=1 k=1
where the final inequality is by induction. Now
j—1 j—1 ”
k —1\ji—k _ —1yj k
DMt raT Y = (a0 Y ()
k=1 k=1
-1
—1\j 2 2
< SRS ([ — —
(atra™) a+yal ( a+va1>
_ —1\j gl
(a+~vya™") P p—
< (a+ va_l)jl.
!
Therefore,
Tjp1 < [a(a +ya ) + (a+ 'yofl)j% T
which simplifies to the desired result. O

Letz; =E;r —&jr,a=1-25and vy = 13r < %. Theng:: (1—25—1—@) <

(1-26)+ %(5*1 < 1 (using 6 < %) Applying the Sublemma, using the L = 0 case
to bound zy by p(w)(B — b) we bound (38) by

%)
w(w)(B —b) (1 — 26+ 10T(14—25)> )

implying the theorem.

APPENDIX A. SYMBOLIC CODING FOR IETS

We use the symbolic coding of interval exchange transformations and concepts
related to it. In this Appendix we supply some standard definitions and terminology
related to this coding. We show the well known and useful fact that IETs are
basically the same as (measure conjugate to) continuous maps on compact metric
spaces, and we recall the definition of a Rokhlin tower, a concept which appears in
the proof of Theorem 1.3.

Definition A.1 (Standard coding for an IET). The standard coding of an interval
exchange transformation T with intervals I; is given by

7:0,1) = {1,2,....,d}% by 7(z) = ...,a_1, ag, a1, ... where T(x) € I,,.

Note that the coding map 7 is not continuous as a map from [0,1) with the
standard topology to {1,2,...,d}* with the product topology.
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Definition A.2 (Blocks of a coding). Fiz a point x, that is not in the orbit of a
discontinuity of T'. Let

Wy q(T) = Cp, Cpt1, -y Cg—1, €q Where T(x) = ...c_1, cp, €1, ...

This word is a block of length ¢ — p, or a (¢ — p)-block.

A key element in our proof is the n-block interval:

Definition A.3 (n-block interval). An interval J C [0,1) is an n-block interval if
J ={z: won(x) = won(xo) for some xo}.

Note that the measure of an n-block interval is the length of the interval J. We
use ‘measure’ rather than ‘length’ so as not to create confusion with the length n
of the coding block corresponding to this n-block interval.

We would like to consider 7([0,1)) as a subshift of the full shift on {1,...d}%,
but the situation is not so simple. Observe that the left shift S acts continuously on
7([0,1)) € {1,2,...,d}%. However, if T satisfies the Keane condition, then 7(]0, 1))
is not closed in {1,2, ..., d}* with the product topology. To see this, consider points
just to the left of a discontinuity of T and the n-blocks wg,(z) corresponding
to them. As z approaches the discontinuity and n — oo, these finite blocks do
not converge to an infinite block in 7([0,1)). Let X be the closure of 7([0,1)) in
{1,2,...,d}? with the product topology. X results from adding a countable number
of points to 7(]0,1)) which correspond to the left hand sides of points in orbits of
a discontinuity. Xisa compact metric space and, equipped with the left shift .S,
is a subshift. Equip X with a measure 1 assigning to the cylinder set defined by
each block the Lebesgue measure of the corresponding block interval in [0, 1).

Let f: X —[0,1) by flr(j0,1) = 77" and extend f by continuity to the rest of
X . Notice that, unlike 7, the map f is continuous. Moreover the map is injective
away from 77! of the orbits of discontinuities, where it is 2-to-1. The left shift S
acts continuously on X and if T satisfies the Keane condition, then the action of S
on (X, 1) is measure conjugate to the action of 7' on ([0,1), Leb).

Definition A.4 (Rokhlin Tower). Let half open intervals Ji,...,J. and natural
numbers mq, ..., m, be given such that

e T7 is continuous (thus an isometry) on J; for 0 < j < m;,

r m;—1 .
e U U T7(J;)=10,1), and
i=1 j=0
e TIJ)NTI (Jy) =0 when 0 < j < 5 < my, 0<j < my and j # j if
1=1.
mi—l .
Then we say that the 'Uo T7(J;) are Rokhlin towers. m; is called the height of the
j:
Rokhlin tower. Each T7(J;) is called a level of the tower.

Rokhlin towers and the symbolic coding are closely related. Up to a suffix and
a prefix, every word in 7([0,1)) is a concatenation of the length m; coding of the
points in J; as ¢ ranges in {1,...,7}. The prefix and suffix are subwords of these
codings.
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