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Abstract. Combining several previously known arguments, we prove marked
length spectrum rigidity for surfaces with nonpositively curved Riemannian

metrics away from a finite set of cone-type singularities with cone angles > 2π.

With an additional condition, we can weaken the requirement on one metric
to ‘no conjugate points.’

1. Introduction

Let (M,g) be a compact Riemannian manifold (perhaps with a small set of
singularities). For any element [γ] of π1(M) there is a (not necessarily unique)
shortest length (piecewise) geodesic γ in M representing [γ]. The function lg ∶
π1(M) → R which assigns the length of γ to [γ] is called the marked length spectrum
of (M,g). One may then ask the following general question:

Question 1.1 (The marked length spectrum rigidity question). To what extent
does the function lg determine the geometry of (M,g)?

This is a well-studied problem; we will note some of the the results on it below.
This paper addresses it for a class of singular metrics on surfaces.

Let S be a compact, connected, orientable surface without boundary. Suppose
that there is a metric on S and a finite set of points P ⊂ S such that on S ∖ P
the metric is induced by a Riemannian metric. We call a point p ∈ P a cone-type
singularity with cone angle α if

α = lim
r→0

Lr
r

where Lr is the length of the circle of radius r around p. Note that a cone point
with angle > 2π behaves like a concentrated point of negative curvature – around
such a point the length of the circles of radius r grow faster than they do in the
Euclidean case.

We say a metric on S is a nonpositively curved cone metric if the metric is Rie-
mannian with nonpositive curvature on S ∖ P , and at each point in P there is a
cone-type singularity with cone angle > 2π. Let Mnpc(S) denote the set of nonposi-
tively curved cone metrics on S. We say that a metric on S is a no conjugate points
cone metric if it has a finite set of cone points P with cone angles > 2π and on S∖P
the metric is Riemannian without conjugate points. We denote the set of no con-
jugate points cone metrics on S by Mncpc(S) and note that Mnpc(S) ⊂ Mncpc(S);
examples first constructed by Gulliver ([Gul75]) show that the containment is strict
(adapting his constructions to allow for cone points is straightforward).
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A strip is the homeomorphic image of a map from R × [0, ε] into S where the
first coordinate parametrizes unit-speed geodesics, and the lifts of these geodesics
to S̃ remain at a bounded distance from one another. In non-positive curvature,
after re-parametrization such a strip is necessarily an isometric immersion – a flat
strip. The goal of this paper is to prove the following theorem:

Theorem 1. Let S be a surface of genus ≥ 2. Let g1 ∈ Mncpc(S) and g2 ∈ Mnpc(S),
and assume that lg1 = lg2 . Assume in addition that g1 satisfies the following condi-
tion:

vol({v ∶ v is tangent to a geodesic lying in a strip}) = 0

where vol denotes the volume form λ ∧ dλ, where λ = pdx is the Liouville form on
the unit tangent bundle of S ∖Pg1 where Pg1 is the set of singularities for g1. Then
(S, g1) is isometric to (S, g2) by an isometry isotopic to the identity.

I do not know whether the assumption on the volume of strips is redundant;
i.e. whether this is true of all metrics without conjugate points. We will show
below that it is satisfied if g1 is in fact in Mnpc(S), and in proving this we will see
that the existence of cone points is not the issue, so this is a question only about
non-singular metrics without conjugate points on a surface with genus > 2.

If we restrict attention to metrics in Mnpc(S), we can drop the strip volume
assumption as well as the assumption on genus since the only nonpositively curved
cone metrics on the torus are the flat metrics, where rigidity is clear.

Corollary 2. Let S be any surface and let g1, g2 ∈ Mnpc(S). Assume that lg1 = lg2 .
Then (S, g1) is isometric to (S, g2) by an isometry isotopic to the identity.

The proof of Theorem 1 combines ideas from the previous work of a number of
authors on the marked length spectrum rigidity problem for surfaces. The general
problem was posed in [BK85, §3]. Shortly thereafter it was proved for surfaces of
negative curvature by Otal [Ota90] and, independently and at roughly the same
time, by Croke [Cro90]. The methods in this paper mainly follow Otal’s work. The
result was extended to g1 without conjugate points and g2 nonpositively curved
with a small (empty interior) region of zero curvature by Fathi [Fat89]. Croke,
Fathi, and Feldman extended this result to g2 of general nonpositive curvature in
[CCF92].

Hersonsky and Paulin [HP97] proved MLS rigidity for negatively curved metrics
with finitely many cone point singularities of angle > 2π. Duchin, Leininger and
Rafi proved it for metrics coming from quadratic differentials [DLR10] – these are
a special subset of the locally Euclidean metrics with cone points of angle > 2π.
Recently, Bankovic and Leininger [BL15] have extended this result to all piecewise
Euclidean metrics with cone singularities of angle > 2π. At the end of their paper
they asked whether their ideas could be combined with those of Croke, Fathi,
and Feldman to prove rigidity for nonpositively curved metrics with cone points.
Frazier proved that the marked length spectrum distinguishes between the various
curvature settings of these results [Fra12].

There are a few marked-length spectrum rigidity results for higher-dimensional
manifolds ([Ham90], [DK02]) and non-manifold spaces ([CL12]). In general, the
problem is very much open for dimension greater than two.

The proof of Theorem 1 consists of combining the ideas from this sequence of
papers. We follow the approach via geodesic currents initiated by Otal. As in Croke,



mls rigidity for nonpositively curved cone metrics

Fathi, and Feldman’s work, much of this approach works under the no conjugate
points and nonpositive curvature assumptions on g1 and g2, respectively, and we
follow Hersonsky and Paulin in extending Otal’s ideas ‘measurably’ to a setting with
singularities. A key step in the argument is the definition of the function θ′(v, θ)
(see §6 below) where one essentially needs to be able to detect which geodesics
in the metrics contain cone points. Hersonsky and Paulin handle this using the
Möbius current, which they develop and use to prove other results; it is not clear
that this can be made to work in the current setting. Instead, we use a result of
Bankovic and Leininger which shows that cone points can be detected in a more
‘low tech’ way – by looking at the support of a certain geodesic current. These
extensions of Otal’s methods provide an isometry between the sets of points in the
two manifolds at which the curvature is negative, or which are cone points. We
then adapt some more ideas from Croke, Fathi, and Feldman, and from Bankovic
and Leininger to extend the isometry to the full surface.

Acknowledgements. I would like to thank Jean-François Lafont for originally
bringing Bankovic and Leininger’s paper to my attention and for helpful comments
on an earlier draft of this paper. I would also like to thank an anonymous referee
for several helpful suggestions.

2. Geodesics for metrics in Mncpc(S)

In this section we prove a few results on the structure of geodesics in S̃ for a
metric with no conjugate points and with cone points of angle > 2π. The results are
straightforward under an assumption of nonpositive curvature, so the reader only
interested in that case can skip this section apart from the definitions. They are
also known in the absence of cone points, see [Gre54].

Let g̃ denote the lift of the metric g to the universal cover S̃ of S. We will call
a g̃-geodesic non-singular if it does not hit any cone points for g̃.

We want to prove that the exponential map, where defined, is injective. This
implies that any g̃-geodesic is length-minimizing, and will be used to show that
g̃-geodesics do not intersect, separate, and then intersect again. For complete man-
ifolds without conjugate points and without cone points, this is Hadamard’s theo-
rem (see, e.g. [dC92, Thm 3.1]). Here we adapt aspects of that proof to deal with
large-angle cone points.

Let expg̃p (or expp when the metric is understood) denote the exponential map

from TpS̃ to S̃. This is defined for nonsingular points p, but it is clear that we

can allow cone points ζ if we interpret Tζ S̃ as the set of nonnegative multiples of
elements in the space of directions at ζ (see [BH99, Defn II.3.18] for a definition of
the space of directions). Because of the singular points, expp may not be defined

for all vectors in TpS̃. Let Vp be the set of all points in S̃ which can be reached
from p by a geodesic which hits no cone points (except perhaps p itself). Let Vp
be such that expp(Vp) = Vp and which is star-shaped : v ∈ Vp implies λv ∈ Vp for all
λ ∈ [0,1]. Note that Vp and Vp are open.

Lemma 2.1. expp ∶ Vp → Vp is a covering map.

Proof. The proof is the same as the classical (no singularities) case. See, e.g. [dC92,
Lemma 3.3]. �
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Lemma 2.2. Let U be a simply connected subset of Vp containing p. Suppose
that every point of U can be reached from p by a geodesic in U . Then there is a
star-shaped U ⊂ Vp containing 0 such that expp(U) = U and expp is injective on U .

Proof. Again, the proof is the same as in the classical case. Use Lemma 2.1 and
pick for U the connected component of exp−1p (U ) containing 0. It is clearly star-
shaped. �

Lemma 2.3. expp is injective on Vp.

Proof. Consider Ur = expp(Ur) where Ur = Vp ∩ Br(0). Note that every point in
Ur can be reached from p by a geodesic entirely in U , since Ur is star-shaped.

By Lemma 2.2, any failure of injectivity for expp must arise from a situation
where expp(Ur) is not simply connected. This can only happen if two radial
geodesics from p meet after going around opposite sides of some cone point ζ.
This situation is depicted in Figure 1.
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Figure 1. Potential non-injectivity of expp ‘behind’ a cone point ζ.

In Fig 1, l1 and l2 are geodesics from p through the cone point ζ making angle
π on either side of ζ. A pair of geodesics demonstrating potential non-injectivity
of the exponential map ‘behind’ ζ are shown; we see that expp(Ur) is not simply
connected, due to the cone point. It is clear that one of the two intersecting
geodesics, say γ, intersects l1 or l2, say l1. Take a tangent vector in Vp at p very
close to the vector between p and ζ and on γ’s side of ζ. The geodesic η it generates
must stay close to l1 for a long time, and therefore must intersect γ before it leaves
Ur.

Restrict Ur to those vectors generating the top half of Figure 1. If the image
of these vectors under the exponential map is simply connected, the intersection of
γ and η is a contradiction to Lemma 2.2. If not, there must be some other cone
point ζ ′ ≠ ζ between γ and η. Apply the argument above again to find a pair of
distinct intersecting geodesics in Ur which enclose a region containing neither ζ nor
ζ ′. Continuing this way, and noting that for any r, there are at most finitely many
cone points within distance r of p, we eventually reach a contradiction to Lemma
2.2, completing the proof.

�
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Proposition 2.4. The intersection of two distinct g̃-geodesics in S̃ for g ∈ Mncpc(S)
has at most one connected component.

This has an immediate corollary:

Corollary 2.5. No g̃-geodesic self-intersects, and every g̃-geodesic is minimizing.

Proof of Proposition 2.4. Suppose we have two geodesics l1 and l2 which intersect at
p and q, but not between. By Lemma 2.3, at least one of these geodesics is singular
and hits a cone point between p and q. We will prove the result by induction on
the number of cone points which lie between l1 and l2 between p and q or which lie
on them but make angle > π on the ‘between’ side.

Suppose there is only one such cone point, ζ on l1 or l2 between their intersections
making angle > π on the ‘between’ side. Assume ζ belongs to l1. Let l′1 be the
geodesic through p and ζ making angle π on the side of ζ to which the segment of
l2 between p and q lies (see Figure 2).

s
s

s
p

ζ q
l1

l2

l′1

Figure 2. Base case for the induction in Propostion 2.4.

We see then that l′1 and l2 intersect before l2 reaches q. We know that l2 is non-
singular over this segment. Although l′1 is not, we may approximate it by a non-
singular segment on the l2-side of ζ since the angles along l1 on that side are always
π. The intersection of this approximating segment and l2 yields a contradiction to
Lemma 2.3.

Now suppose we have proven the result when n or fewer cone points lie between
l1 and l2. We can reduce to the case where all the cone points lie on the geodesics
by re-drawing l1 from p through a cone point between l1 and l2. At the last cone
point before q on l1 or l2 where an angle > π is made, replace the geodesic by the
angle π geodesic on the correct side of that cone point as above. We see that the
number of cone points which are between l1 and l2 and at which one of the geodesics
makes angle > π strictly decreases. By the inductive hypothesis, we are done. �

We will need the following below. An analogous result is the key to Fathi and
Croke-Fathi-Feldman’s extension to the ‘no conjugate points’ assumption for g1.
They reference Morse ([Mor24]) for the version without cone points; we give an
alternate proof here allowing cone points.

Proposition 2.6. Let g1, g2 ∈ Mncpc(S) for a surface of genus ≥ 2. Then there
exists a constant K > 0, depending only on g1 and g2, such that any g̃1-geodesic
contains a g̃2-geodesic in its K-neighborhood, and vice versa.
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Proof. Let Γ = π1(S). Each of (S̃, g̃1) and (S̃, g̃2) are quasi-isometric to Γ with a
word metric, and hence are δ-hyperbolic metric spaces for some δ. There is a quasi-
isometry (S̃, g̃1) → (S̃, g̃2). Since any g̃1-geodesic is minimizing (by Corollary 2.5),
it is a quasi-geodesic for g̃2. The result follows from the stability of quasi-geodesics
in δ-hyperbolic spaces (see, e.g., [BH99, III.H Theorem 1.7]). �

If S is endowed with a metric g in Mncpc(S), then (S̃, g̃) can be compactified

by adding the boundary at infinity ∂∞(S̃), which consists of equivalence classes of

asymptotic geodesic rays. Note that since Γ ∶= π1(S) acts cocompactly on S̃, we

can identify ∂∞(S̃) with ∂∞(Γ) where Γ is endowed with the word metic for any
finite generating set.

By Corollary 2.5 all geodesics for g̃ ∈ Mncpc(S) are minimizing, so to any geodesic

l in (S̃, g̃) we can associate l(+∞) and l(−∞), its forward and backward endpoints

in ∂∞(S̃). If g has strictly negative curvature, any pair of distinct points {ξ1, ξ2}
in ∂∞(S̃) specifies a unique geodesic in (S̃, g̃). In nonpositive curvature, any two

geodesics in the universal cover with the same endpoints in ∂∞(S̃) bound a flat
strip, that is, an isometrically embedded copy of R × [a, b] ([Gre54, Thm 4.1]).
With only the no conjugate points assumption, they bound a (not necessarily flat)
strip and through each (non-cone) point in this strip runs a unique geodesic with
the same endpoints at infinity ([Gre54, Cor 3.1]).

Definition 2.7. Let Gg̃ be the set of images of g̃-geodesics. We topologize Gg̃ by
considering it as the quotient space of the space of parametrized g̃-geodesics with the
topology of convergence on compact sets, where we form the quotient by forgetting
the parametrization.

Let

G (S̃) = [(∂∞(S̃) × ∂∞(S̃)) ∖∆]/((x, y) ∼ (y, x))
(where ∆ is the diagonal) be the set of unordered pairs of distinct points in the

boundary of S̃.

Definition 2.8. Let ∂g̃ ∶ Gg̃ → G (S̃) send a geodesic l to {l(+∞), l(−∞)}.

Note that Gg̃ depends on the metric, while G (S̃) depends only on Γ. Due to
Proposition 2.6 (applied with g2 of strictly negative curvature, for instance) ∂g̃ is
surjective. As noted above, it is injective away from geodesics contained in strips.

Definition 2.9. We say g̃1-geodesic l corresponds to g̃2-geodesic l′ if ∂g̃1(l) =
∂g̃2(l′).

Definition 2.10. Let G○g̃ be the set of non-singular g̃-geodesics, i.e. those not

hitting any cone point. Let G∗g̃ = G○g̃.

We now want to prove that G○g̃ is non-empty, and to characterize what will turn

out to be almost every geodesic in G∗g̃ (see Lemma 5.2). The first will be essential for

our construction of the Liouville current (Section 4); the second is essential to use
Bankovic-Leininger’s characterization of the support of that current (Proposition
5.3).

Proposition 2.11. Let g ∈ Mncpc(S). At any non-cone point p ∈ S̃ the set of
geodesics through p in G○g̃ is full measure with respect to the angular measure.
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Proof. Two distinct vectors based at p generate geodesics that never intersect else-
where, by Proposition 2.4, so each cone point lies on the geodesic generated by at
most one such vector. There are only countably many cone points in S̃, so the
proposition follows. �

Proposition 2.12 (cf. Prop 2.3, [BL15]). Let g ∈ Mncpc(S). If l is a g̃-geodesic
containing at most one cone point and making angle π on one side at that point,
then l ∈ G∗g̃ .

Proof. Let ζ be the cone point contained in l. Let v∗ be the tangent vector to l
at ζ; again, at singular points we interpret TζS as the set of nonnegative multiples
of directions from p. For any sequence (vn) of vectors tangent to geodesics (lvn)
in G○g̃ with vn approaching v∗ via basepoints on the π-side of l, the forward ray of
lvn converges to the forward ray of l, since there are no cone points along that ray.
The same is true for backward rays since there are again no cone points along those
rays and the angle l makes at that side of ζ is π.

By Proposition 2.11 almost every vector for the Lebesgue measure on T 1(S̃ − P̃ )
is tangent to a geodesic in G○g̃ . So a sequence answering the requirements of (vn)
above exists.

�

We close this section by proving a claim mentioned in the introduction – that
the volume in T 1(S ∖ P ) of flat strips for a metric in Mnpc(S) is zero.

Proposition 2.13. Let g be in Mnpc(S) where S has genus at least 2, and let B
be the set of all v ∈ T 1

g S which are based at a point in some flat strip, and point in
the direction of the strip. Then volg(B) = 0 where vol denotes the usual measure
on T 1

g .

Proof. Note that no flat strip may contain a cone point, so the argument necessarily
takes place in S ∖ P .

Assume the contrary. Let Fg be the set of flat strips for g. We may assume
that each strip in F is maximal, in the sense that it cannot be extended to a flat
strip with greater width. As S has genus > 2, such a maximum width must exist.
The volume in T 1(S ∖ P ) of any single flat strip is zero, so if B is to have positive
volume, there must exist some δ > 0 such that there are infinitely many flat strips
with width > δ.

Let (Fj) be a sequence of distinct (maximal) flat strips with width > δ. There
is a subsequence (Fij) converging to a maximal flat strip G with width > δ in the
sense that there is a tangent vector vG to the geodesic direction to the strip G and
a sequence of vectors (vij) → vG such that vij is tangent to the geodesic direction at
the center of the strip Fij . We may assume G does not belong to the sequence Fij
by removing it if necessary. For sufficiently large j, Fij and G overlap, and so we
can define the angle αij between vij and vG using the fact that the strips are flat.
We note that this angle cannot be zero, else Fij ∪G would provide an extension of
either Fij or G, contradicting maximality.

Now consider the flat half-strips, i.e. isometric immersions of R+ × [a, b] which
are obtained from restricting G to [L,∞) in the geodesic coordinate, for any L.
Again, each such flat half-strip is contained in a maximal width flat half-strip. Let
Wmax be the supremum of all the widths of these. Since the genus of S is at least
2, it is again clear that Wmax < ∞. Pick some flat half-strip arising from G with
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width at least Wmax − δ
16

; call it G+. Note that flat half-strips F +

ij
coming from the

Fij approach G+, and that the angles between these flat half strips (for sufficiently
large j) are αij .

Now it is possible to use an argument of Cao and Xavier in [CX08] (also discussed
in [CS14, Prop 3.1]) to produce from G+ and the F +

ij
a flat half-strip along G with

width δ
8

greater than the width of G+, producing a contradiction.
�

Remark 2.14. The argument above also works under the weaker assumption that
there are uncountably many maximal flat strips. The cone points play no role in
the question – in fact once you have infinitely many strips with width at least δ,
one could perform a surgery on δ

3
-neighborhoods of the cone points and produce a

complete, nonpositively curved metric with infinitely many strips of width at least
δ
3

and proceed from there. Though Cao and Xavier’s argument will not work under
the weaker assumption of no conjugate points, the fact that we have not exploited
the full strength of the positive volume assumption above gives some hope that the
following question may have a positive answer.

Question 2.15. Let g be a Riemannian metric on a closed surface of genus at least
two without conjugate points. Does the set of all tangent vectors for strips have zero
volume?

3. Geodesic currents

Apart from the original work of Croke [Cro90], proofs of marked length spectrum
rigidity for surfaces all rely on the fundamental work of Otal relating the marked
length spectrum to geodesic currents. (See [Bon86, Bon88] for good references on
geodesic currents.)

Definition 3.1. A geodesic current on (S, g) is a Γ-invariant Radon measure on

G (S̃).

Write C (S) for the set of geodesic currents on S. Again, this depends only on
Γ, not the particular metric. We endow C (S) with the weak*-topology.

A first, and crucial, example is the following. Let γ be a closed geodesic on (S, g).
Abusing notation slightly, we can also view γ as an element of the fundamental
group Γ. The set of all lifts of γ to (S̃, g̃) maps under ∂g̃ to a discrete, Γ-invariant

set of points in G (S̃). Denote by ⟨γ⟩ the current given by the counting measure on
this set.

We now record a few fundamental facts about geodesic currents.

Theorem 3.2 (See [Bon86], Proposition 4.2). The set of real multiples of geodesic
currents of the form ⟨γ⟩ for γ ∈ Γ is dense in C (S).

Note that the intersection of two geodesics in Gg̃ can be detected by the ordering
of their endpoints around the boundary at infinity. In particular, intersection is
independent of the choice of metric.

Definition 3.3 (See [Bon86], §4.2). For γ ∈ Γ, let I(γ̃) be the subset of Gg̃ consist-
ing of all g̃-geodesics intersecting γ̃, the axis for γ. Let I(γ̃) be any fundamental
domain for the action of γ on I(γ̃). For any µ ∈ C (S) we define the intersection
number of µ and γ by

i(µ, ⟨γ⟩) = µ(∂g̃(I(γ̃))).
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The following theorem of Otal is fundamental to the entire approach to MLS
rigidity through currents.

Theorem 3.4 ([Ota90], Théorème 2). For µ1, µ2 ∈ C (S), µ1 = µ2 if and only if
i(µ1, ⟨γ⟩) = i(µ2, ⟨γ⟩) for all γ ∈ Γ.

The intersection number of a current µ and a closed geodesic γ, in the special
case where µ = ⟨γ′⟩, counts the number of intersections of the two closed geodesics
γ and γ′. The intersection number can be extended to a symmetric, bilinear pairing
i(µ1, µ2) on C(S), but this is not necessary for the arguments of this paper. (See
[Bon86, §III and §IV] for details on this extension.)

4. The Liouville current

We follow Hersonsky-Paulin and Bankovic-Leininger in extending the Liouville
current in the presence of cone points. It is defined as follows.

Let k be an oriented geodesic segment for g̃ not hitting any cone points. Let
G○g̃(k) ⊂ Gg̃ be the set of g̃ geodesics transversally intersecting the interior of k which

do not hit any cone point. We introduce coordinates (t, θ) on G○g̃(k) by letting t(l)
be the distance from the starting point of k to its intersection with l ∈ G○g̃(k) and

by letting θ(l) ∈ (0, π) be the angle between the forward direction of k and l. Let
D○(k) ⊂ [a, b]×(0, π) be all the coordinate pairs arising this way. As there are only

countably many cone points in (S̃, g̃), D○(k) is a full Lebesgue measure subset of
[a, b] × (0, π) (using Proposition 2.11). The bijection D○(k) → G○g̃(k) allows us to

push forward the measure defined on D○(k) by

L̂g =
1

2
sin θdθdt

to a measure L̂g(k) on G○g̃(k).
Cover G○g̃ , the set of g̃-geodesics not hitting any cone point, by sets of the form

G○g̃(k). Let G○

g̃ be the set of parametrized non-singular geodesics in (S̃, g̃). We then
have

Proposition 4.1. The measures L̂g(k) are transverse invariant measures on the
foliation of G○

g̃ by geodesics, and therefore define a global measure on G○g̃, denoted

by L̂g. This measure is Γ-invariant.

Proof. Γ-invariance follows from the definition of L̂g, provided the other parts of
the proposition can be proven.

That the L̂g(k) are transverse invariant measures on the foliation by non-singular
geodesics follows from an argument pointed out by Hersonsky and Paulin [HP97,
Prop 4.11]: applying a countable cutting procedure to the well-known analogous
result without singularities. �

Definition 4.2. The Liouville current Lg is the element of C (S) formed by ex-

tending L̂g to all of Gg̃ by setting L̂g(Gg̃ ∖ G○g̃) = 0 and pushing forward L̂g by ∂g̃ to

a measure on G (S̃).

The following proposition gives the key relationship between this current and
the geometry of (S, g):
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Proposition 4.3. For any geodesic segment k and I(k) the set of all g̃-geodesics
intersecting k transversally in its interior, Lg(∂g̃(I(k))) = lengthg(k).

Proof. This follows easily from integrating the local coordinate expression for L̂g.
�

Proposition 4.4. For every γ ∈ Γ,

i(Lg, ⟨γ⟩) = lengthg(γ).

Proof. Every γ is realized by a finite union of geodesic segments. Then use Theorem
3.3 and Proposition 4.3. �

Combining these results, we get the following important result linking the marked
length spectrum to the Liouville currents.

Proposition 4.5. Suppose that g1, g2 ∈ Mncpc(S) have the same marked length
spectrum. Then Lg1 = Lg2 .

Proof. By Theorem 3.4 we need only check that i(Lg1 , ⟨γ⟩) = i(Lg2 , ⟨γ⟩) for all
γ ∈ Γ. But this is provided by Proposition 4.4 and equality of the marked length
spectrum. �

5. Cone points

In [BL15], Bankovic and Leininger provide a novel way to detect cone points using
the Liouville current. They work in the setting of nonpositively curved Euclidean
cone metrics – metrics which are locally Euclidean away from a finite set of cone
points which have cone angles > 2π. The reader can easily use the results of Section
2 verify that the results in the first four sections of their paper hold for metrics in
Mncpc(S). The key steps are to replace their use of the CAT(0) assumption in a
few places by results we proved in Section 2, and to replace references to ‘flat strips’
by ‘strips,’ using the work in [Gre54] noted above.

Their identification of cone points relies on carefully studying the support of Lg.
We restate their main results here.

Definition 5.1. Let G2g̃ ⊂ G∗g̃ be the set of geodesics in G∗g̃ containing at least two

cone points. Let G∗g̃ (ζ) be the set of geodesics in G∗g̃ which contain the cone point ζ.

Lemma 5.2 (See [BL15], Corollary 2.5). G2g̃ is countable.

Proof. Bankovic and Leininger argue that containing more than one cone point
and yet still lying in G∗g̃ , that is, being the limit of non-singular geodesics, forces a
geodesic to make angle π on one side at every cone point with the side on which
this angle lies switching at most once. As there are countably many cone points,
the result follows. �

From its definition, the following is clear:

Proposition 5.3. Supp(Lg) = ∂g̃(G∗g̃ ).

Then by examining the support of Lg, specifically special sequences of points in
∂g̃(G∗g̃ ), they prove the following theorem.
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Theorem 5.4 ([BL15], see Prop 4.5 and work in section 4). Let g1, g2 ∈ Mnpc(S)
have the same marked length spectrum. Then there is a Γ-equivariant, bijective
isometry Fc ∶ cone(g̃1) → cone(g̃2) (with respect to the metrics induced by g̃1 and g̃2)

between the cone points of (S̃, g̃1) and those of (S̃, g̃2). Furthermore, this isometry
is induced by a map Fc ∶ ⋃ζ G∗g̃1(ζ) ∖Ω → Gg̃2 , for Ω countable, which takes the set
of geodesics in G∗g̃1 ∖ Ω passing through a cone point ζ of g̃1 to geodesics passing

through the cone point Fc(ζ) of g̃2 in such a way that Fc(l) corresponds to l.

Bankovic and Leininger introduce the following notion to prove this theorem:

Definition 5.5 (See §4 of [BL15]). For a countable subset Ω ⊂ ∂g̃G∗g̃ . An (Lg,Ω)-
chain is a sequence (xi) of points in ∂∞(S̃) such that for all i,

● {xi, xi+1} ∈ supp(Lg) ∖Ω, where Ω is countable, and
● xi, xi+1, xi+2 is counterclockwise ordered and the set of all points in supp(Lg)

between {xi, xi+1} and {xi+1, xi+2} (in the sense that a geodesic realizing
this point is between geodesics realizing {xi, xi+1} and {xi+1, xi+2}) is only
{{xi, xi+1},{xi+1, xi+2}}. (See [BL15, §2.3] for the precise definition of ‘be-
tween.’)

Figure 3 illustrates a few steps in an (Lg,Ω)-chain.

r
x1

x2

x3

x4

x5

ζ

Figure 3. A few steps in an (Lg,Ω)-chain. The angle between
[ζ, xi] and [ζ, xi+1] is π.

Outline of proof of Theorem 5.4. Let ζ be a cone point for g̃. Then there is a
countable set Ω containing ∂∞(G2g̃i) for i = 1,2 (thanks to Lemma 5.2), and a set

of (Lg,Ω)-chains corresponding to geodesics passing through ζ. In addition, ζ is
uniquely specified by these chains in that given any (Lg,Ω)-chain, it corresponds to
a sequence of g̃-geodesics through a unique cone point ([BL15, Prop 4.1]). Further-

more, one can detect from conditions on ∂∞(S̃) alone whether two (Lg,Ω)-chains
specify the same cone point ([BL15, Lemma 4.4]). As the marked length spectrum
determines Lg, and hence supp(Lg), equality of marked length spectra for g1 and
g2 implies that we have a bijective map cone(g̃1) → cone(g̃2) (see [BL15, proof of
Theorem 5.1]).

We now describe the map Fc. Let ζ be a cone point for g̃1. It is the unique cone
point specified by an (Lg1 ,Ω)-chain (see [BL15, Lemma 4.2]). The g1-geodesics
realizing this chain correspond to the g̃2-geodesics doing the same. As noted above,
these g̃2-geodesics pass through Fc(p). This proves the last statement of the The-
orem.
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Finally, we want to show that Fc is an isometry. Let ζ1, ζ2 ∈ cone(g̃1), and let
k be the g̃1-geodesic segment between them. Consider the set Gg̃1(k) of all g̃1-
geodesics l intersecting k transversally and such that ∂g̃1(l) ∉ Ω. Using the fact
that Fc is induced by the map Fc described above and the fact that cone points
cannot lie in the interior of a flat strip, it is not hard to see that the g̃2-geodesics
with the same endpoints as those in Gg̃1(k) are precisely those intersecting the g̃2
geodesic segment k′ between Fc(ζ1) and Fc(ζ2) and not having endpoints in Ω. As
Ω is countable, the set of geodesics with endpoints in Ω is measure zero for any
Liouville current. Then using Propositions 4.3 and 4.5,

dg̃1(ζ1, ζ2) = Lg1(∂g̃1(I(k))) = Lg1(∂g̃1(Gg̃1(k)))
= Lg2(∂g̃2(Gg̃2(k′))) = Lg2(∂g̃2(I(k′)))
= dg̃2(Fc(ζ1), Fc(ζ2)).

This completes the proof.
�

Remark 5.6. As we will see below, the work of Fathi and Croke-Fathi-Feldman (us-
ing Otal’s ideas) produces a similar isometry between points where the curvature
is negative. Since cone points with angle > 2π are like point masses of negative cur-
vature (as in the Gauss-Bonnet theorem with cone points), it is not surprising that
this result would hold. What is particularly nice about Bankovic and Leininger’s
approach is its comparatively ‘low-tech’ approach – they only need to know the
support of the Liouville current.

Let T 1
g be the subset of T 1(S̃ − P̃ ) consisting of unit tangent vectors for non-

singular g̃-geodesics. Note that almost every vector in T 1(S̃ − P̃ ) (with respect to
the usual volume) is in T 1

g .

Proposition 5.7. There is a volume zero, geodesic flow-invariant subset B of T 1
g1

such that the following is true. Let l be a non-singular g̃1-geodesic whose tangent
vectors do not lie in B. Then no g̃2-geodesic corresponding to l is singular. Specifi-
cally, B is the set of tangent vectors for non-singular geodesics which do not belong
to a strip bordering a cone point.

Proof. From Theorem 5.4 we know that any cone point for g̃2 is Fc(ζ) for ζ some
cone point of g̃1. Under our assumption, ζ does not belong to l.

Let r1 and r2 be the geodesic rays from ζ to the endpoints ∂g̃1(l) = {x, y}. If r1
and r2 make angle < π at ζ, then it is not hard to see that there is an (Lg1 ,Ω)-chain
through ζ containing the endpoints of a geodesic γ through ζ which makes angle π
on the l side of ζ, and with endpoints distinct from x and y and on the ζ side of x
and y. (See Figure 4.) The corresponding geodesic passing through Fc(ζ) for the
(Lg2 ,Ω)-chain has the same endpoints and also makes angle π on the side of Fc(ζ)
to which x and y lie. We then see that any g̃2-geodesic connecting x and y cannot
pass through Fc(ζ), as desired.
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s ζl

r1

r2

γ

x

y

Figure 4. An (Lg1 ,Ω)-chain geodesic γ through ζ entirely to one
side of l. The marked angle is π. There are uncountably many
such γ that can be drawn, so we can find one that avoids Ω.

Now suppose that r1 and r2 make angle π on the l-side of ζ. Then l and r1 ∪ r2
bound a strip. Letting B be the set of tangent vectors to non-singular geodesics
belonging to strips bordering a cone point gives the result, using either Proposition
2.13 if g1 ∈ Mnpc(S) or the assumptions of Theorem 1 if not. �

Definition 5.8. Let Ĝ○g̃1 ⊂ G
○

g̃1
be the set of all non-singular g̃1-geodesics which do

not belong to a strip bordering a cone point (as in Proposition 5.7). Let T̂ 1
g1 be the

set of all tangent vectors to geodesics in Ĝ○g̃1 .

Proposition 5.7 shows that no geodesic corresponding to l is singular, so in fact
no geodesic corresponding to l can lie in a strip bordering a cone point. We thus
have

Corollary 5.9. Geodesics in Ĝ○g̃1 correspond only to geodesics in Ĝ○g̃2 and vice versa.

6. Angle correspondence

The following result is the key to proving a version of Theorem 5.4 for points of
negative curvature.

Proposition 6.1. There is a full measure set of θ ∈ (0, π) such that the following

holds. Suppose that l1, l2 are g̃1-geodesics in Ĝ○g̃1 intersecting with angle θ. Then

any two corresponding g̃2-geodesics l′1, l
′

2 intersect with angle θ.

Remark 6.2. Note that the angle between l′1 and l′2 is well-defined. Indeed, by

definition of Ĝ○g̃1 and Proposition 5.7, the l′i are non-singular. Hence they intersect
in a well-defined angle, and the problematic configurations in Figure 5 do not occur.
Further, if l′1 and l′′1 both correspond to li, then they bound a flat strip. The fact
that this strip is flat ensures that the angle between l′1 and l′2 is the same as the
angle between l′′1 and l′2.

13



l1

l2

-
‘corresp.’ r rl′1

l′2

or rl′1

l′2

Figure 5. Transversal geodesics in Ĝ○g̃1 and two pictures which do
not occur for corresponding g̃2-geodesics.

Proposition 6.1 is implicit in the work of Otal, and has been reproven by Fathi
and Hersonsky-Paulin (implicitly), and Croke-Fathi-Feldman (explicitly, see [CCF92,
Lemma 1.5]). Each note that Otal’s proof works in their situation with minor ad-
justments. The most significant adjustment comes in the case of cone singularities,
and lies at the beginning of the argument. We describe this adjustment carefully
here, then follow Otal and the subsequent presentations for the rest of the proof.

Let θ ∈ (0, π). Let θ ⋅ v denote the rotation of v by θ (using the fact that S is

oriented, this action commutes with that of Γ). Since T̂ 1
g1 is full volume in T 1

g1 and

P̃ is countable, the set of (v, θ) such that both v and θ ⋅ v lie in T̂ 1
g is full measure

in T 1
g1 × (0, π) using the volume on the tangent bundle and the Lebesgue measure

on (0, π).
Let (v, θ) ∈ T̂ 1

g1 × (0, π) be a pair such that θ ⋅ v ∈ T̂ 1
g1 . Consider the g̃1-geodesics

lv and lθ⋅v they generate in Ĝ○g̃1 . Under the correspondence with g̃2-geodesics, these

correspond to geodesics l′v and l′θ⋅v in Ĝ○g̃2 (Corollary 5.9). Let θ′(v, θ) be the g̃2-

angle between l′v and l′θ⋅v. Set θ′(v,0) = 0 and θ′(v, π) = π. By Γ-equivariance of the
above construction, θ′(v, θ) induces a map, also denoted θ′(v, θ), almost everywhere

on T̂ 1
g1(S) × [0, π]. The measure zero set where θ′(v, θ) is undefined does not make

any difference to the rest of Otal’s argument, which is measure-theoretic from this
point.

Note that the work of Bankovic and Leininger is crucial (via Proposition 5.7)
to defining θ′(v, θ) almost everywhere in the presence of cone points. If we try to
extend the definition to the problem cases shown in Figure 5 by, say, chosing one
of the two natural ‘candidates’ for the angle between l′v and l′θ⋅v then problems will
arise when trying to prove Lemma 6.4 below. Hersonsky and Paulin also have to
address the well-definedness problem in their use of Otal’s work. They provide a
separate proof of the fact that the correspondence takes non-singular geodesics to
non-singular geodesics ([HP97, Lemma 4.15]) that uses their extensive work on the
Möbius current (also in [HP97]). The Möbius current is defined using the crossratio
and involves a fair bit of CAT(−1) technology, so it is not at all clear that something
analogous can be done in the nonpositive curvature setting.

We now summarize the rest of Otal’s argument to prove Proposition 6.1. For
details of the proofs which are unaffected by our more general class of metrics, we
refer to Otal’s paper ([Ota90], particularly §2 and §3 through the proof of Lemme
8).
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Let µg be the usual volume form on T 1
g (S). Let V ol(T 1

g (S)) be the volume of

T 1
g (S) with respect to this measure.

Definition 6.3. Let

Θ′(θ) = 1

V ol(T 1
g (S))

∫
T 1
g (S)

θ′(v, θ)dµg.

Since θ′(v, θ) is defined for almost all (v, θ), this integral is valid for almost all θ.

The following properties are fairly straightforward. The third assertion follows
from the Gauss-Bonnet theorem with singularities.

Lemma 6.4. Where defined, Θ′ has the following properties:

(1) Θ′ ∶ [0, π] → [0, π] is increasing.
(2) For all θ ∈ [0, π],

Θ′(π − θ) = π −Θ′(θ).
(3) For all θ1, θ2 ∈ [0, π] such that θ1 + θ2 ∈ [0, π],

Θ′(θ1 + θ2) ≥ Θ′(θ1) +Θ′(θ2).
Proof. See [Ota90, Prop. 6], or [HP97, Prop. 4.16]. For Otal, Θ′ is a homeomor-
phism, but Hersonsky-Paulin note that only measurability is needed. �

By the Jensen inequality, for any real-valued, strictly convex function F on [0, π],
for every θ,

(6.1) F (Θ′(θ)) ≤ 1

V ol(T 1
g (S))

∫
T 1
g (S)

F (θ′(v, θ))dµg

with equality for all F if and only if v ↦ θ′(v, θ) is constant. Integrating with
respect to sin θdθ and applying Fubini, we have

(6.2) ∫
π

0
F (Θ′(θ)) sin θdθ ≤ 1

V ol(T 1
g (S))

∫
T 1
m(S)

(∫
π

0
F (θ′(v, θ) sin θdθ)dµg.

Proposition 6.5. For any convex function F ,

∫
π

0
F (Θ′(θ)) sin θdθ ≤ ∫

π

0
F (θ) sin θdθ

Proof. Otal’s proof of this result ([Ota90, Prop. 7]) can be extended to the ‘mea-
surable’ case as noted in Hersonsky-Paulin Prop. 4.17. We note that in the course
of this proof, Otal proves that

(6.3)
1

V ol(T 1
g (S))

∫
T 1
m(S)

(∫
π

0
F (θ′(v, θ) sin θdθ)dµg = ∫

π

0
F (θ) sin θdθ.

�

Lemma 6.6. Suppose that H is a measurable, increasing function on [0, π], which
is superraditive and commutes with the symmetry with respect to π/2. Suppose in
addition that for any convex function F on [0, π]

∫
π

0
F (H(θ)) sin θdθ ≤ ∫

π

0
F (θ) sin θdθ.
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Then H = Id.

Proof. See [Ota90, Lemme 8] or [HP97, Lemma 4.18]. �

Proof of Proposition 6.1. With equation (6.2) and (6.3) we have that

∫
π

0
F (Θ′(θ)) sin θdθ ≤ ∫

π

0
F (θ) sin θdθ.

By Lemma 6.6, Θ′ = Id so we have equality in the equation above. But this
equation comes from integrating equation (6.1) over [0, π] with respect to sin θdθ.
So we must indeed have equality in equation (6.1) for almost all θ. As noted, this
implies that v → θ′(v, θ) is constant for this full measure set of θ.

Returning to the definition of Θ′ and using Θ′ = Id, we have for such θ that

θ = 1

V ol(T 1
g (S))

∫
T 1
g (S)

θ′(v, θ)dµg.

As θ′(v, θ) is constant in v, we must have θ′(v, θ) = θ. This completes the proof. �

Corollary 6.7. g1 ∈ Mnpc(S).

Proof. This follows from the Gauss-Bonnet theorem and the angle correspondence
given by Proposition 6.1. Indeed, any positive curvature for g̃1 would be witnessed
by some geodesic triangle with total angle sum > π, which cannot hold for the
corresponding triangle under the nonpositively curved metric g̃2.

To use Proposition 6.1 for this argument, we must ensure that the sides of this
geodesic triangle are in Ĝ○g̃1 and intersect at angles in the full-measure set provided
by that proposition. Proposition 2.11 guarantees that almost all geodesics through
any non-cone point are in G○g̃1 , and G○g̃1 ∖ Ĝ

0
g̃1

has measure zero by our assumptions
for Theorem 1. Using these facts it is easy to check that arbitrarily small geodesic
triangles around any point of positive curvature answering the requirements of
Proposition 6.1 can be constructed. �

7. Isometry on points of negative curvature

We now prove a version of Theorem 5.4 on the sets of strict negative curvature
in (S, g1) and (S, g2). To do so, we follow ideas of Croke-Fathi-Feldman.

Definition 7.1. Define a partial relation on S̃ by p ∼ p′ if almost every non-singular
g̃2-geodesic through p′ (with respect to the angular Lebesgue measure on the fiber of
T 1
g̃2

over p′) is a bounded distance from non-singular g̃1 geodesic through p.

Following Croke-Fathi-Feldman we have the following results.

Lemma 7.2 ([CCF92], Lemma 2.3). The relation ∼ is the graph of a bijective

function Fneg between its domain D̃1 and range D̃2. D̃1 and D̃2 are Γ-invariant
and Fneg is Γ-equivariant.

Proof. We need to prove the following. If p ∼ p′1 and p ∼ p′2, then p′1 = p′2. That
Fneg is a bijection follows from reversing the roles of g̃1 and g̃2. (Recall that by
Corollary 6.7 both metrics are now in Mnpc(S).)

We are given that almost every non-singular g̃2-geodesic through p′i is a bounded
distance from a non-singular g̃1-geodesic through p. We note that two distinct g̃2-
geodesics through p′i cannot correspond to the same g̃1-geodesic through p as they

have different endpoints in ∂∞(S̃). We then see that the map from T 1
g̃2
(p′i) to T 1

g̃2
(p)
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induced by the correspondence of these non-singular geodesics is a strictly increasing
map with respect to the angular order on these spaces. A strictly increasing map
defined almost everywhere is continuous almost everywhere, and by applying the
same argument with the roles of p and p′i reversed we see that the map is in fact
extendable to a continuous function from the circle of directions at p′i to the circle
of directions at p.

Using this, we see that almost every non-singular g̃2-geodesic through p′1 is
a bounded distance from a non-singular g̃2-geodesic through p′2. These pairs of
geodesics must bound flat strips, but by Proposition 2.13 we know this is impossi-
ble.

�

Let Ũi = {p ∈ (S̃ ∖ P̃ , g̃i) ∶ κg̃i(p) < 0} be the set of non-cone points where the

g̃i-curvature is strictly negative. This is an open subset of S̃.

Lemma 7.3 ([CCF92], Lemma 2.4). Ũ1 is in the domain D̃1 of Fneg.

Proof. Let p ∈ Ũ1. Note that no g̃1-geodesic through p bounds a flat strip. Pick
any two non-singular geodesics l1 and l2 through p. Then l1 and l2 are in Ĝ○g̃1 . Let

l′i be corresponding g̃2-geodesics, and let their intersection be p′ – it is unique by

Proposition 6.1. We also note that l′i are in Ĝ○g̃2 by Corollary 5.9.

Now let l′3 be a geodesic in Ĝ○g̃2 through p′. Note that almost every geodesic

through p′ is in Ĝ○g̃2 , since, by the argument of Proposition 2.13 only countably
many flat strips can pass through any point.

Now consider the geodesic triangle formed by l1, l2, and l3. By the angle corre-
spondence of Proposition 6.1, it has angle sum π, and since g̃1 has negative curvature
at p, the triangle must degenerate to the point p by Gauss-Bonnet with singularities.
Thus l3 passes through p and we have proven that p ∼ p′, as desired. �

Remark 7.4. Note that Fneg works in the same way Fc of section 5 does – by taking
p to the common intersection of g̃2-geodesics corresponding to a full measure set of
g̃1-geodesics passing through p.

Proposition 7.5. Let g1, g2 ∈ Mnpc(S) with the same marked length spectrum.
Then the map Fneg described above is a Γ-equivariant bijective isometry between

Ũ1 and Ũ2.

Proof. Let p1, p2 ∈ Ũ1, and let k be the g̃1-geodesic segment between them. Consider
the set Gg̃1(k) of all g̃1-geodesics intersecting k transversally. Fneg(p1) and Fneg(p2)
lie in at most countably many flat strips. So it is not hard to see that all but
countably many {a, b} ∈ ∂g̃1(Gg̃1(k)) correspond to elements of ∂g̃2(Gg̃2(k′)) where
k′ is the geodesic segment connecting Fneg(p1) and Fneg(p2), and vice versa. Then,
just as in the last step of the proof of Theorem 5.4,

dg̃1(p1, p2) = Lg1(∂g̃1(Gg̃1(k)))
= Lg2(∂g̃2(Gg̃2(k′)))
= dg̃2(Fneg(p1), Fneg(p2)).

We now know that Fneg ∶ Ũ1 → S̃ is a metric isometry; it is clearly Γ-invariant.

By considering this metric isometry applied to short geodesic segments in Ũ1, it is
17



easy to see that it must in fact be a Riemannian isometry, and a homeomorphism
onto its image. Therefore it must take Ũ1 into Ũ2. Reversing the roles of the two
metrics proves it is bijective, completing the proof. �

8. Building the full isometry

In sections 5 and 7 we built Γ-equivariant isometries Fc ∶ cone(g̃1) → cone(g̃2)
and Fneg ∶ Ũ1 → Ũ2 between the cone points and points of negative curvature,
respectively. We first note that both of these maps are defined in the same way –
by showing that the correspondence between g̃1-geodesics and g̃2-geodesics takes (a
full measure set of) geodesics through a point p to (a full measure set of) geodesics
through F−(p). The proof that the maps are isometries is the same in each case.
Therefore, these maps can be combined into a single isometry:

Proposition 8.1. F ′ ∶= Fc∪Fneg ∶ cone(g̃1)∪Ũ1 → cone(g̃2)∪Ũ2 is a Γ-equivariant
isometry.

What remains is to extend this isometry to the set of points of curvature zero.
To do so we follow ideas of both Croke-Fathi-Feldman and Bankovic-Leininger.

The following two lemmas will be useful.

Lemma 8.2. Let p1, p2, q1, q2 ∈ cone(g̃1) ∪ Ũ1. If the g̃1-geodesic segments [p1, p2]
and [q1, q2] intersect in their interiors, then the g̃2-geodesic segments [F ′(p1), F ′(p2)]
and [F ′(q1), F ′(q2)] intersect in their interiors.

Proof. Recall that F ′(p) is the common intersection point of g̃2-geodesics corre-
sponding to almost every g̃1-geodesic through p. From this it is immediate that
any geodesic l through p1 and p2 corresponds to a geodesic through F ′(p1) and

F ′(p2). Then the configuration of geodesics in Ĝ−g̃1 in the left half of Figure 6 must

correspond to a configuration as in the right half, where h′ and l′ intersect between
l′1 and l′2.

(S̃, g̃1)

-
F ′

(S̃, g̃2)

qq1

q
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q
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q
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F ′(p1)

F ′(p2)

Figure 6. F ′ applied to intersecting segments.
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(Note that such a configuration can be drawn, with l, l1 and l2 having distinct
endpoints, because none of the pi, qi can lie in the interior of a flat strip.)

Reversing the roles of pi and qi, we see that Figure 6 is inaccurate as drawn. In
fact h′ must cross l′ between F ′(p1) and F ′(p2), proving the lemma.

�

Lemma 8.3. Let p1, p2, p3 and q be points in cone(g̃1) ∪ Ũ1 such that q lies in the
interior of the g̃1-geodesic triangle formed by p1, p2, and p3. Then F ′(q) lies in the
interior of the g̃2-geodesic triangle formed by F ′(p1), F ′(p2), and F ′(p3).

-
F ′

r

r r
r

r

r r
l

h

q

h′

l′

Figure 7. F ′ applied to geodesic triangles.

Proof. Figure 7 shows that F ′(q) must lie in the open half-space bounded by l′

containing ∆(F ′(p1), F ′(p2), F ′(p3)). Running this argument for all three sides
of ∆(p1, p2, p3) proves the lemma. (Again, the configuration in this figure can be
drawn since q does not belong to the interior of any flat strip and so h can be taken
to have distinct endpoints from l.) �

Note that we can assume that cone(g1) (and hence cone(g2) by Theorem 5.4)
are non-empty – otherwise Croke-Fathi-Feldman applies. Then we may take a Γ-
invariant geodesic triangulation τ̃ of (S̃, g̃1) such that the vertices are precisely the
cone points. (This is an easy construction). The lemmas above show that F ′ sends

this triangulation to a triangulation of (S̃, g̃2):

Lemma 8.4. Let F ′(τ̃) be the collection of g̃2-geodesic segments {[F ′(p1), F ′(p2)] ∶
[p1, p2] ∈ τ}. Then F ′(τ̃) is a Γ-invariant triangulation of (S̃, g̃2) with vertex set

precisely cone(g̃2). Further, if q ∈ cone(g̃1) ∪ Ũ1 belongs to a triangle T of τ̃ , then
F ′(q) ∈ F ′(T ), where F ′(T ) is the triangle formed by the F ′ images of the vertices
of T .

Proof. That F ′(τ̃) is Γ-invariant with vertex set cone(g̃2) is clear. That it preserves
containment in triangles is an immediate application of Lemma 8.3.

Every segment in {[F ′(p1), F ′(p2)] ∶ [p1, p2] ∈ τ̃} belongs to two 3-cycles in
F ′(τ̃), thought of as an abstract graph, on opposite sides of that edge, since this is
true for τ . By Lemma 8.2 these segments do not intersect away from the vertices.
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Then the geometric realization of this graph in the simply connected S̃ is an infinite,
locally finite, planar graph, all of whose edges belong to two triangles on opposite
sides of the edge. Therefore it is a triangulation. �

To complete the proof of Theorem 1 we need to extend F ′ to a Γ-equivariant
isometry on all of (S̃, g̃1).

Proof of Theorem 1. Fix a Γ-invariant geodesic triangulation τ̃ of (S̃, g̃1) as above.
Let T0(τ̃) be the set of all triangles of τ̃ which have g̃1-flat interior. Since F ′

respects containment of points with negative curvature in triangles, the induced
map from triangles of τ̃ to triangles of F ′(τ̃) takes T0(τ̃) bijectively to T0(F ′(τ̃)).
Let V1 = {p ∈ T̄ ∶ T ∈ T0(τ̃)} and V2 = {p ∈ T̄ ∶ T ∈ T0(F ′(τ̃))}. Since F ′ is
an isometry on the vertices of these Euclidean triangles, it can be extended to
F ′

0 ∶ cone(g̃1) ∪ U1 ∪ V1 → cone(g̃2) ∪ U2 ∪ V2 as a Riemannian isometry away from
the cone points. It is clear that F ′

0 is well-defined on any points at the boundary
of two such triangles, and that F ′

0 is Γ-equivariant.
If g̃1 is Euclidean away from cone points, this completes the proof. This is similar

to, but not exactly, the argument of Bankovic-Leininger.
Now let T<(τ̃) be the set of all triangles of τ̃ for which there is some point in

Int(T ) at which the g̃1-curvature is strictly negative. To extend F ′

0 to these trian-
gles, we use the approach of Croke-Fathi-Feldman. T<(τ̃) is certainly Γ-invariant
and F ′ takes this collection of triangles to T<(F ′(τ̃)). Pick, for each triangle T in

T<(τ̃) a point p∗T ∈ Int(T ) at which κ(p∗T ) < 0 in a Γ-invariant way. Let VT ⊂ Tp∗
T
S̃

be such that expg̃1
p∗
T
(VT ) = T̄ . This set exists since there are no cone points in the in-

terior of T and the exponential map is injective as we are in nonpositive curvature.
Then, following Croke-Fathi-Feldman, we define

FT ∶ (T, g̃1) → (S̃, g̃2)
p ↦ (expg̃2

F ′0(p
∗

T
)
) ○ (DF ′

0)p∗T ○ (expg̃1
p∗
T
)−1(p).

First, we claim that FT extends F ′

0, that is, if q ∈ T̄ ∩ (cone(g̃1) ∪ Ũ1), then
FT (q) = F ′

0(q). Let c(t) be the unit-speed g̃1-geodesic connecting p∗T to q with

c(0) = p∗T . Then dg̃1(c(t), q) = d(p∗T , q) − t. For sufficiently small ∣t∣, c(t) lies in Ũ1

since c(0) does. Thus, for sufficiently small ∣t∣, we can use the fact that F ′

0 is an
isometry and we have

dg̃2(F ′

0(c(t)), F ′

0(q)) = dg̃2(F ′(p∗T ), F ′(q)) − t.
This implies that F ′

0(c(t)) lies along the geodesic segment connecting F ′

0(p∗T ) and
F ′

0(q) for at least small values of ∣t∣. In particular, (DF ′

0)p∗T (ċ(0)) is tangent to the

geodesic from F ′

0(p∗T ) to F ′

0(q). Then, using the definition of FT and the fact that
F ′

0 is an isometry, it is easy to see that FT (q) = F ′

0(q).
Second, FT must preserve curvature, since we now know it agrees with the isom-

etry F ′

0 on points of negative curvature and cone points, and all other points have
zero curvature.

Third, we claim that FT ∣Int(T ) is a Riemannian isometry onto its image. At

points in Ũ1 this follows from the fact that it is a (metric) isometry. Let q be a

point in Ũ c1 and v ∈ TqS̃. If v is tangent to the geodesic connecting p∗T and q, then
it is easy to see from the definition of FT that ∣(DFT )q(v)∣g̃2 = ∣v∣g̃1 . Now assume
that v is normal to the geodesic from p∗T to q. There is a unique Jacobi field along
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this geodesic with value 0 at p∗T and value v at q. Since any Jacobi field arises
from a variation of geodesics, DFT takes this Jacobi field to a Jacobi field along the
geodesic from FT (p∗T ) to FT (q). By the second point above, the curvatures along
the geodesic segments [p∗T , q] and [F ′(p∗T ), F ′(q)] agree, so by the Jacobi equation,
∣(DFT )q(v)∣g̃2 = ∣v∣g̃1 . This proves the claim.

Fourth, we claim that FT has its image in the geodesic triangle F ′(T ) from the
triangulation F ′(τ̃). Since FT is a Riemannian isometry on its interior, and since
the geodesics bounding T can be approached by sequences of geodesics in Int(T ),
we see that FT takes T to a geodesic triangle. From the first claim, we know FT
takes the vertices of T to the vertices of F ′(T ). But there is only one geodesic
triangle with these vertices – namely F ′(T ). Reversing the roles of g̃1 and g̃2 shows
that FT is bijective onto its image.

We now let F = ⋃T ∈τ̃ FT . It is clear from its construction that F is Γ-equivariant
and extends F ′

0. The fact that each FT maps the geodesic edges to the geodesic
edges of F ′(T ) preserving arc-length implies that F is well-defined along the edges of
τ̃ . The fact that FT is a Riemannian isometry on the open dense subset consisting
of the interiors of all the triangles in τ̃ and an isometry on the cone point sets,
together with the fact that distance for g̃1 or g̃2 is realized by lengths of shortest
paths then easily implies that F is an isometry.

To prove that the map F induces on (S, g1) → (S, g2) is isotopic to the identity,

we note that by Γ-equivariance, the extension of F to ∂∞(S̃) is the identity, so the
map F induces on Γ is the identity, proving the result.

This completes the proof of Theorem 1.
�
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