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Consider a compact surface of genus ≥ 2 equipped with a metric that is flat everywhere

except at finitely many cone points with angles greater than 2π . Following the technique

in the work of Burns, Climenhaga, Fisher, and Thompson, we prove that sufficiently

regular potential functions have unique equilibrium states if the singular set does

not support the full pressure. Moreover, we show that the pressure gap holds for any

potential that is locally constant on a neighborhood of the singular set. Finally, we

establish that the corresponding equilibrium states have the K-property and closed

regular geodesics equidistribute.

1 Introduction

We examine the uniqueness of equilibrium states for geodesic flows on a specific class

of CAT(0) surfaces, those where the negative curvature is concentrated at a finite set of
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15156 B. Call et al.

points. Translation surfaces are examples of such surfaces. A translation surface X is a

pair (X, ω) where X is a Riemann surface of genus g, and ω is a holomorphic one-form on

X. The zeroes of this holomorphic one-form occur at a finite set of points. The one-form

ω defines a metric that is flat everywhere except at its zeroes. At the zeroes, the metric

has a conical singularity with angle 2(n + 1)π , where n is the order of the zero. For a

more in-depth overview of translation surfaces, see [22, 23].

In [4], the authors prove that under certain conditions, a unique equilibrium

state exists for potentials associated with the geodesic flow on a closed, rank-one

manifold with nonpositive sectional curvature (an example of a CAT(0) space without

singularities). The conditions are a Hölder continuous potential and a pressure gap,

that is, topological pressure of the flow restricted to the singular set is strictly less

than pressure of the flow overall. The singular set they consider is all the vectors in the

unit tangent bundle with rank larger than one.

When the singular set is empty—for example, in strictly negative curvature—

every Hölder potential has a unique equilibrium state. When the singular set is non-

empty, an additional condition is necessary as the geodesic flow is nonuniformly

hyperbolic. Restricting the pressure of the flow on the singular set is a way of describing

the flow of the singular set as having a small enough impact on the system as a whole

that uniqueness is still guaranteed.

The natural way to define a geodesic flow on CAT(0) surfaces is to look at the

flow on the set of all geodesics (see Section 2.1). Denote by GS the set of all geodesics on

the surface S (see (1)).

In this paper, we study the uniqueness of equilibrium states for the geodesic

flow described above (see Definition 2.5), as we are guaranteed existence for continuous

potentials by entropy-expansivity of the flow (see Lemma 2.17). In particular, we use the

technique of [4] in our setting and define the singular set to be the set of geodesics that

never encounter any cone points or, when they do, turn by angle exactly ±π .

Remark. Some other settings where the uniqueness of equilibrium states were studied

are described in more detail below in the outline of the argument.

We prove the following.

Theorem A. Let gt be the geodesic flow on S, a compact, connected surface of genus

≥ 2 equipped with a metric that is flat everywhere except at finitely many cone points

that have angle greater than 2π . Let Sing be the singular set as defined in Definition 2.4.
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Consider φ : GS → R a Hölder continuous potential. If the pressure of the singular set is

strictly less than the full topological pressure, that is, P(Sing, φ) < P(φ) (see Definitions

2.5 and 2.6), then φ has a unique equilibrium state μ that has the K-property (see

Definition 2.2).

It is natural to ask for which potentials we have the pressure gap (i.e., the

condition P(Sing, φ) < P(φ)) in Theorem A. The following theorem establishes the

pressure gap for a large class of Hölder continuous potentials and thus uniqueness

of equilibrium states.

Theorem B (Theorem 7.1 and Corollary 7.8). Let S, GS, and gt be as in Theorem A.

Let φ : GS → R be a Hölder continuous function that is locally constant on a neigh-

borhood of Sing, or which is sufficiently close to a constant in the uniform norm (see

Corollary 7.8 for a precise statement of “sufficiently close”). Then P(Sing, φ) < P(φ).

As a nice corollary (Corollary 7.7 below), we have htop(gt|Sing) < htop(gt) for our

flows.

We slightly improve the case φ = 0 from Ricks’s result [20, Theorem B] by

showing that the unique measure of maximal entropy for the geodesic flow on S has

the K-property that is stronger than mixing. Using the Patterson–Sullivan construction,

Ricks builds a measure of maximal entropy μ [19] and shows it is unique by asymptotic

geometry arguments [20]. We note that Ricks’s result holds for any compact, geodesi-

cally complete, locally CAT(0) space such that the universal cover admits a rank-one axis.

A natural question is whether the techniques in this paper can be extended to

the more general CAT(0), rank-one setting in which Ricks works. The present paper can

be viewed as a 1st step in that direction, but working in the general CAT(0) setting

presents real difficulties right from the outset of the argument. In particular, without

the Riemannian structure present in [4] or the flat surface structure we exploit, it is not

clear to us what the right candidate for the singular set for would be or how to find a

function like λ (see Section 3) to aid in producing an orbit decomposition.

We call a geodesic that is not in Sing regular. Using strong specification for

a certain collection of “good” orbit segments, we show that weighted regular closed

geodesics equidistribute to these equilibrium states (see Section 8 for details).

Theorem C (Theorem 8.1). Let φ be as in Theorem B and μφ is the corresponding

equilibrium state. Then, μφ is the weak* limit of weighted regular closed geodesics.
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1.1 Outline of the argument

A general scheme for proving that unique equilibrium states exist was developed by

Climenhaga and Thompson [10], building on ideas of Bowen [2] that were extended

to flows in [17]. To prove that there are unique equilibrium states for a flow {ft} and

a potential φ on a compact metric space X, Climenhaga and Thompson ask for the

following (see [10, Theorems A and C]).

• The pressure of obstructions to expansivity, P⊥
exp(φ) (see Definition 2.7), is

smaller than P(φ).

• There are three collections of orbit segments P,G,S, that we call collections

of prefixes, good orbit segments, and suffixes, respectively, such that each

orbit segment can be decomposed into a prefix, a good part, and a suffix (see

[4, Definition 2.3]), satisfying

(I) G has the weak specification property at any scale (Definition 2.8);

(II) φ has the Bowen property on G (Definition 2.9); and

(III) P([P] ∪ [S], φ) < P(φ).

This scheme was implemented for the geodesic flow on a closed rank-one mani-

fold with nonpositive sectional curvature in [4] and, more generally, without focal points

in [7, 8]. Also, it was used to obtain the uniqueness of the measure of maximal entropy

on certain manifolds without conjugate points in [9] and on CAT(-1) spaces in [13].

Our proof follows a specific approach to satisfying the conditions in the above

scheme that was applied in [4] and that allows us to reduce condition (III) to checking

the pressure of an invariant subset of GS. Although the decomposition (P,G,S) is in

general very abstract, we choose the decomposition using a function λ on the space

of geodesics. This choice of decomposition also allows us to avoid having to deal with

the sets [P] and [S], which are discretized versions of P and S necessary for technical

counting arguments to be applied to some decompositions. We define the function λ,

prove that it is lower semicontinuous, and describe how it gives rise to a decomposition

in Section 3. For such a “λ-decomposition”, P = S and, roughly speaking, orbit segments

in P and S have small average values of λ whereas any initial or terminal segment of

an element of G has average value of λ, which is not small. Furthermore, by utilizing a

λ-decomposition, we are able to appeal to the following result.

Theorem 1.1. ([6, Theorem 4.6]) Let F be a continuous flow on a compact metric

space X, and let φ : X → R be continuous. Suppose the flow is asymptotically
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entropy-expansive, that P⊥
exp(φ) < P(φ), and that λ : X → [0, ∞) is lower semicontinuous

and bounded. If the λ-decomposition (P,G,S) satisfies the following:

• G(η) has strong specification at all scales, for all η > 0;

• φ has the Bowen property on G(η);

• P(
⋂

t∈R(ft × ft)λ̃
−1(0), �) < 2P(φ),

where �(x, y) = φ(x)+φ(y) and λ̃(x, y) = λ(x)λ(y), then (X,F , φ) has a unique equilibrium

state which has the K-property.

Theorem A will follow from Theorem 1.1 after we show that we can sat-

isfy all conditions required. See Section 1.2 for the sections where each property is

checked.

Our choice of λ gives a connection between orbit segments in P and S and

the singular set Sing (see Definition 2.4). The singular set is also the source of the

obstructions to expansivity (see Lemma 2.16). These connections are useful for proving

the two “pressure gap” properties Theorem 1.1 calls for P⊥
exp(φ) < P(φ) and P(

⋂
t∈R(ft ×

ft)λ̃
−1(0), �) < 2P(φ). In particular, in our case,

⋂
t∈R ftλ

−1(0) = Sing.

Remark. The strong specification property on G in Theorem 1.1 is used to

obtain that the equilibrium state has the K-property. The weak specification

property on G is enough to guarantee the existence of a unique equilibrium

state.

Remark. The K-property implies strong mixing of all orders.

1.2 Organization of the paper

The paper is organized as follows. In Section 2, we provide definitions of and

background on the main objects and tools of this paper and we record some

basic geometric results that will be used throughout the paper. The main steps

for the proof of Theorem A according to Theorem 1.1 are in Sections 3 (the

λ-decomposition), 4 and 5 (the specification property for G), and 6 (the Bowen property

for G).

We obtain Theorem B in Section 7, first proving the pressure gap condition for

potentials that are locally constant on a neighborhood of Sing, and then using this result

to note that the same gap holds for potentials with sufficiently small total variation.

Theorem C (the equidistribution result) is proved in Section 8.
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Fig. 1. A large-angle cone point, embedded in R3. Away from the cone point, the surface is flat

under the intrinsic metric—it is the union of lines in R3 and so has Gaussian curvature zero. The

dark lines show a geodesic segment hitting the cone point and its two continuations with turning

angles ±π ; these geodesics are in Sing. All continuations of the geodesic with line segments

passing through the dark shaded region are geodesics. The spread of the geodesic continuations

in this region is exactly the source of “hyperbolicity” for the geodesic flow in these spaces.

2 Background

2.1 Setting and definitions

Throughout, S denotes a compact, connected surface of genus ≥ 2 equipped with a

metric that is flat everywhere except at finitely many conical points that have angles

larger than 2π (see Figure 1). We assume S is oriented by passing to the oriented double

cover if necessary. Con denotes the set of conical points on S and denote by L(p) the

total angle at a point p ∈ S. In particular, L(p) = 2π if p /∈ Con and L(p) > 2π if p ∈ Con.

Note that in the special case of a translation surface, L(p) is always an integer multiple

of 2π , but we make no such restriction here. Denote by S̃ the universal cover of S, and

note that S̃ is a complete CAT(0) space (see, e.g., [3] for definitions and basic results on

CAT(0) spaces). Throughout, tildes denote the obvious lifts to the universal cover.

Since S̃ is CAT(0), any p̃, q̃ are connected by a unique geodesic segment.

Throughout, we will denote this segment by [p̃, q̃].

Let GS be the set of all (parametrized) geodesics in S. That is,

GS = {γ : R → S | γ is a local isometry}. (1)
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We endow GS with the following metric:

dGS(γ1, γ2) = inf
γ̃1,γ̃2

∫ ∞

−∞
dS̃(γ̃1(t), γ̃2(t))e−2|t| dt, (2)

where the infimum is taken over all lifts γ̃i of γi to GS̃ for i = 1, 2. GS serves as an

analogue of the unit tangent bundle in our setting. (Indeed, for a Riemannian surface,

GS is homeomorphic to T1S.) It is necessary to examine this more complicated space

as geodesics in S are not determined by a tangent vector—they may branch apart from

each other at points in Con. In this setting, the metric dGS records the idea that two

geodesics in GS are close if their images in S are nearby for all t in some large interval

[−T, T].

Geodesic flow on GS comes from shifting the parametrization of a geodesic:

(gtγ )(s) = γ (s + t).

The normalizing factor 2 in our definition of dGS ensures that gt is a unit-speed flow

with respect to dGS. (Showing this is a completely straightforward computation, using

the fact that dS̃(γ̃ (t), γ̃ (s + t)) = s).

We recall two definitions of the K-property of an invariant measure. See

Section 10.8 in [15] for a proof of the equivalence of these definitions (known as com-

pletely positive entropy and K-mixing, respectively) with the original definition of the

K-property, as well as more details about other equivalent definitions.

Definition 2.1. A flow-invariant measure μ has the K-property if (X, (gt), μ) has no

nontrivial zero entropy factors (i.e., the Pinsker factor is trivial).

This definition can be reformulated as a statement about mixing in the following

manner.

Definition 2.2. A flow-invariant measure μ has the K-property if for all t 	= 0, for all

k ≥ 1, and all measurable sets A0, A1, . . . , Ak, we have

lim
n→∞ sup

B∈Cn(A1,...,Ak)

∣∣μ(A0 ∩ B) − μ(A0)μ(B)
∣∣ = 0,

where Cn(A1, . . . , Ak) is the minimal σ -algebra generated by gtr(Aj) for 1 ≤ j ≤ k and

natural r ≥ n.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/17/15155/6701570 by Science Library user on 27 M
arch 2024
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Remark. The K-property implies strong mixing of all orders. We recall that an

invariant measure μ is strongly mixing of all orders if for all k ≥ 1 and all measurable

sets A0, A1, . . . , Ak, we have

lim
t1→∞, tj+1−tj→∞ μ(A0 ∩ gt1

(A1) ∩ . . . ∩ gtk
(Ak)) =

k∏
j=0

μ(Aj).

A key tool in our analysis of the geodesic flow on S will be the turning angle of

a geodesic at a cone point. We note that although S is not smooth at p ∈ Con, there is a

well-defined space of directions at p, SpS and a well-defined notion of angle (see, e.g.,

[3, Ch. II.3]). In the angular metric, SpS is a circle of total circumference L(p).

Definition 2.3. Let γ ∈ GS. The turning angle of γ at time t is θ(γ , t) ∈
(−1

2L(γ (t)), 1
2L(γ (t))] and is the signed angle between the segments [γ (t − δ), γ (t)]

and [γ (t), γ (t + δ)] (for sufficiently small δ > 0). A positive (resp. negative) sign for

θ corresponds to a counterclockwise (resp. clockwise) rotation with respect to the

orientation of [γ (t − δ), γ (t)].

Since γ is a geodesic, |θ(γ , t)|−π ≥ 0 for any t ∈ R. If γ (t) 	∈ Con, then θ(γ , t) = π .

Definition 2.4. We define the singular geodesics in S as

Sing = {γ ∈ GS : |θ(γ̃ , t)| = π ∀t ∈ R}.

Since Sing is defined in terms of properties of full geodesics, it is gt-invariant. Geodesics

not in Sing turn by some angle 	= π at a cone point. This is an open condition, so Sing is

closed and hence compact.

The geodesics in Sing either never encounter any cone points or, when they

do, turn by angle exactly ±π . They serve as an analogue of the singular set in the

Riemannian setting of [4], that is, geodesics that remain entirely in zero-curvature

regions of the surface. In both cases, the idea is that a singular geodesic never takes

advantage of the geometric features of the surface (either its negative curvature regions

or its large-angle cone points) to produce hyperbolic dynamical behavior. We note here

a potentially confusing aspect of this terminology: a singular geodesic in this paper

avoids the “singular”, that is non-smooth, points of Con, or treats them as if they are

not “singular”.
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We introduce some classical notions of thermodynamical formalism.

Definition 2.5. Consider a function φ : GS → R that we refer as a potential function.

The pressure for φ is

P(φ) = sup
μ

(
hμ(gt) +

∫
GS

φ dμ

)
,

where μ varies over all invariant Borel probability measures for gt and hμ(gt) is the

measure-theoretic entropy with respect to the geodesic flow.

An invariant Borel probability measure μφ (if it exists) such that

P(φ) = hμφ
(gt) +

∫
GS

φ dμφ

is an equilibrium state for φ.

Definition 2.6. P(Sing, φ) is the pressure of the potential φ|Sing on the compact and

flow-invariant set Sing (see Definition 2.4).

Below, we discuss some of the necessary definitions to apply the Climenhaga–

Thompson machinery.

Definition 2.7. Let ε > 0. The non-expansive set at scale ε for the flow gt is

NE(ε) = {γ ∈ GS | ε(γ ) 	⊂ g[−s,s]γ for all s > 0},

where

ε(γ ) = {ξ ∈ GS | dGS(gtγ , gtξ) ≤ ε ∀t ∈ R}.

The pressure of obstructions to expansivity for a potential φ is

P⊥
exp(φ) = lim

ε↓0
sup

{
hμ(g1) +

∫
GS

φ dμ
∣∣ μ(NE(ε)) = 1

}
,

where the supremum is taken over all gt-invariant ergodic probability measures μ on

GS such that μ(NE(ε)) = 1.

In other words, a geodesic is in the complement of NE(ε) if the only geodesics

that stay ε close to it for all time are contained in its own orbit. A flow is expansive
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if NE(ε) is empty for all sufficiently small ε. The presence of flat strips in our setting

means our flow will not be expansive, but for small ε, the complement of NE(ε) will turn

out to be a sufficiently rich set to use in our arguments.

In the interest of concision, we omit the formal definition of an orbit decompo-

sition, referring instead to [10]. We will use a specific type of decomposition that has

been studied in [5, 6], and we will primarily use results from those two papers. We note,

however, that results from [10] hold for our decompositions as well, as it is written for a

more general class of decomposition. We discuss this more in Section 8, where we will

need to appeal to a few results directly from [10]. Identify a pair (γ , t) ∈ GS × [0, ∞) with

the orbit segment {gsγ | s ∈ [0, t]}. An orbit decomposition is a method of decomposing

any orbit segment into three subsegments, a prefix, a central good segment, and a

suffix. We denote the collections of these segments by P,G, and S, respectively. The

λ-decompositions that we use in this paper are orbit decompositions that decompose

orbit segments based on a lower semicontinuous function λ. Our choices for the function

λ and the associated parameter η > 0 will be discussed in detail in Section 3, but the

idea is this. The function λ measures the amount of “hyperbolic” behavior seen by the

geodesic; in accord with our intuition that cone points are the source of this behavior,

λ will be based on turning angles at these points. A segment is “good” for our purposes

(i.e., in G(η)) if it experiences a lot of hyperbolicity; otherwise, it is in P = S:

• G = G(η) consists of all (γ , t) such that the average value of λ over every initial

and terminal segment of (γ , t) is at least η, and

• P = S = B(η) consists of all (γ , t) over which the average value of λ is less

than η.

We can define both specification and the Bowen property for an arbitrary

collection of orbit segments G ⊂ GS × [0, ∞). In both cases, by taking G = GS × [0, ∞),

one retrieves the definitions for the full dynamical system.

Definition 2.8. We say that G has weak specification if for all ε > 0, there exists τ > 0

such that for any finite collection {(xi, ti)}n
i=1 ⊂ G, there exists y ∈ GS that ε-shadows

the collection with transition times {τi}n
i=1 at most τ between orbit segments. In other

words, for 1 ≤ i ≤ n, there exists τi ∈ [0, τ ] and y ∈ GS such that

dGS(gt+si
y, gtxi) ≤ ε for 0 ≤ t ≤ ti,

where sk = ∑k−1
j=1 tj + τj. We will refer to such τ as a specification constant.
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We say that G has strong specification when we can always take each τj = τ in

the above definition.

Definition 2.9. Given a potential φ : GS → R, we say that φ has the Bowen property on

G if there is some ε > 0 for which there exists a constant K > 0 such that

sup
{∣∣∣∣∫ t

0
φ(grx) − φ(gry) dr

∣∣∣∣ ∣∣ (x, t) ∈ G and dGS(gry, grx) ≤ ε for 0 ≤ r ≤ t
}

≤ K.

Remark. If φ has the Bowen property on a collection of orbit segments G at some scale

ε > 0, it in turn has the Bowen property on G at all smaller scales ε′ < ε.

There is also a definition of topological pressure for collections of orbit

segments. However, by using Theorem 1.1, we sidestep this complication.

Finally, we adapt a piece of terminology from flat surfaces to our somewhat

more general setting.

Definition 2.10. A geodesic segment with both endpoints in Con and no cone points

in its interior is called a saddle connection. A saddle connection path is composed of

saddle connections joined so that the turning angle at each cone point is at least π . Note

that with this definition all saddle connection paths are geodesic segments.

2.2 Basic geometric results

In this section, we collect a few basic results on the geometry of S, S̃, GS, and GS̃ that

will be used in our subsequent arguments.

The following two lemmas relate the metric dGS to the metric dS on the surface

itself and will be useful for a number of our calculations below. First, we note that if

two geodesics are close in GS, then they are close in S at time zero.

Lemma 2.11. ([13, Lemma 2.8]) For all γ1, γ2 ∈ GS,

dS(γ1(0), γ2(0)) ≤ 2dGS(γ1, γ2).

Furthermore, for s, t ∈ R, dS(γ1(s), γ2(t)) ≤ 2dGS(gsγ1, gtγ2).

Conversely, if two geodesics are close in S for a significant interval of time

surrounding zero, then they are close in GS.
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Lemma 2.12. ([13, Lemma 2.11]) Let ε be given and a < b arbitrary. There exists

T = T(ε) > 0 such that if dS(γ1(t), γ2(t)) < ε/2 for all t ∈ [a − T, b + T], then

dGS(gtγ1, gtγ2) < ε for all t ∈ [a, b]. For small ε, we can take T(ε) = − log(ε).

A similar, and more specialized, result that we will need later in the paper (see

the proof of Proposition 6.2) is the following.

Lemma 2.13. Suppose that dS(γ1(t), γ2(t)) = 0 for all t ∈ [a, b]. Then, for all t ∈ [a, b],

dGS(gtγ1, gtγ2) ≤ e−2 min{|t−a|,|t−b|}.

Proof. For any x ≥ 0,
∫ ∞

x (s − x)e−2s ds = 1
4e−2x. In the setting of the lemma, since the

distance between the geodesics is zero on [a, b] and since geodesics move at unit speed,

dGS(gtγ1, gtγ2) ≤
∫ a

−∞
2(a − s)e−2|t−s| ds +

∫ ∞

b
2(s − b)e−2|t−s| ds.

Quick changes of variables show that this is equal to
∫ ∞
|t−a| 2(s−|t−a|)e−2s ds+∫ ∞

|t−b| 2(s−
|t − b|)e−2s ds = 1

2 (e−2|t−a| + e−2|t−b|), and the lemma follows. �

The geodesic flow has the following Lipschitz property.

Lemma 2.14. ([14, Lemma 2.5]) Fix a T > 0. Then, for any t ∈ [0, T], and any pair of

geodesics γ , ξ ∈ GS,

dGS(gtγ , gtξ) < e2TdGS(γ , ξ).

We need the following four geometric facts.

Lemma 2.15.

(a) There exists some d0 > 0 such that S̃ contains no flat d0 × d0 square.

(b) There exists some η0 > 0 such that the excess angle at every cone point in S

is at least η0.

(c) There exists some �0 > 0 such that the length of every saddle connection is

at least �0.

(d) There exists some θ0 > 0 such that the excess angle at every cone point in S

is at most θ0.
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Unique Equilibrium States for Translation Surfaces 15167

Proof. These follow immediately from the compactness of S and the fact that S having

genus at least two implies Con 	= ∅. �

We note here that Sing is the source of the non-expansivity for our geodesic flow.

Lemma 2.16. For all ε > 0 less than half the injectivity radius of S, NE(ε) ⊂ Sing.

Proof. Suppose γ ∈ NE(ε) and that ε is smaller than half the injectivity radius of S.

Then, there exists ξ ∈ GS which is not in the orbit of γ such that dGS(gtγ , gtξ) ≤ ε for all

t ∈ R. By Lemma 2.11, dS(γ (t), ξ(t)) ≤ 2ε for all t ∈ R. In particular, using our assumption

on ε, there exist lifts γ̃ and ξ̃ such that dS̃(γ̃ (t), ξ̃ (t)) ≤ 2ε for all t ∈ R. By the flat strip

theorem [1, Corollary 5.8 (ii)], there is an isometric embedding R × [a, b] → S̃ sending

R × {a} to the image of γ̃ and R × {b} to the image of ξ̃ .

Since ξ̃ is not in the orbit of γ̃ , we must have a 	= b and the isometrically

embedded strip is nondegenerate. But this immediately implies that for all t, |θ(γ̃ , t)| = π

as γ̃ always turns at angle π on the side to which the embedded flat strip lies. Therefore,

γ ∈ Sing.
�

Recall that a flow is called entropy-expansive if for sufficiently small ε,

sup{htop(gt|ε(γ )) | γ ∈ GS} = 0.

Lemma 2.17. ([20, Lemma 20]) The geodesic flow in our setting is entropy-expansive.

Proof. This is proven by Ricks [20] for geodesic flow on a CAT(0) space. This covers

our setting, but Ricks uses a slightly different definition of the metric on GS than we

do, so we outline the argument here.

Fix ε less than half the injectivity radius of S. Lift γ to γ̃ ∈ GS̃. Any geodesics

ξ ∈ ε(γ ) lift to ξ̃ ∈ ε(γ̃ ). They are either of the form gtγ̃ for |t| < ε or are

parallel to γ̃ in a flat strip containing γ̃ . The flow on ε(γ̃ ) is thus isometric, and so

htop(gt|ε(γ )) = 0. �

Lemma 2.18. Given any closed geodesic γ ⊂ S, there is a closed saddle connection

path that is homotopic to γ and has the same length as γ .

Proof. Assume γ contains a point p ∈ Con. Then the desired closed saddle connection

path is the geodesic that starts at p and traces γ .

Suppose γ ⊂ S \ Con, and so γ̃ ⊂ S̃ \ C̃on. Fix an orientation of γ̃ , and consider

the variation γ̃r of curves given by sliding γ̃ to its left (so the variational field is
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15168 B. Call et al.

perpendicular to γ̃ and to its left with respect to γ̃ ’s orientation). Since γ̃ ⊂ S̃ \ C̃on and

γ is closed, there is a nonzero lower bound on the distance from γ̃ to C̃on. Therefore, for

all sufficiently small r, γ̃r is defined. The projections to S, γr, and γ form the boundary

of a flat cylinder in S. Thus, γr is a geodesic with length equal to that of γ .

Let r∗ be the supremum of all r > 0 for which γ̃ρ is defined for all ρ ∈ [0, r].

Note that if no supremum exists, γ̃ bounds a flat half-space in S̃, which contains a

fundamental domain for S since S is compact. This would imply S is flat (with no cone

points), a contradiction. Therefore, letting r → r∗ from below, γ̃r limits uniformly on a

path, and therefore necessarily a geodesic, containing at least one point in C̃on with the

same length as γ̃ . The image of this curve in S (with appropriate parametrization) is the

saddle connection path we want. �

In the proof of Lemma 2.20 and in some later proofs, we will use the following

construction.

Definition 2.19. Let γ̃ be a geodesic segment in S̃ with endpoint p. The cone around

γ̃ with vertex p and angle ψ is the set of all points q in S̃ such that the unique geodesic

segment joining p and q makes angle ≤ ψ with γ̃ at p. (In Section 3, Figure 2 shows such

cones in the context of the proof of Lemma 3.8.)

Lemma 2.20. For any ζ ∈ Con, there exists a closed geodesic α passing through ζ with

turning angle greater than π at ζ .

Proof. Let ζ be a cone point with L(ζ ) = 2π + β for β > 0. Lift ζ to ζ̃ in S̃, and

let c̃ be a geodesic with c̃(0) = ζ̃ and turning angle θ(c̃, 0) = π + β
2 . Let C1 be the

cone around c̃(−∞, 0) with vertex ζ̃ = c̃(0) and angle β
8 ; let C2 be the cone around

c̃(0, ∞) with vertex ζ̃ = c̃(0) and angle β
8 . By construction, any geodesic connecting

a point in C1 \ {ζ̃ } to a point in C2 \ {ζ̃ } must pass through ζ̃ with turning angle

≥ π + β
4 .

Let F be a fundamental domain contained in C1. Let g ∈ π1(S) be such that

gF ⊂ C2. (F and g exist as both C1 and C2 contain arbitrarily large balls and S is

compact.) Let α be the closed geodesic representative of g in S. (It will become clear

in a moment why α is unique up to parametrization.) Lift α to α̃ with α̃(0) ∈ F . Then

α̃(�(α)) ∈ gF . As noted above, this forces α̃ to pass through ζ̃ and turn with angle > π .

Therefore, α is the desired geodesic (and it is unique up to parametrization since it

cannot belong to a flat cylinder). �
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Fig. 2. The argument for Case 1 in Lemma 3.8. The geodesic segments connecting points in B2 and

B1 meet at the cone point p with angle ≥ π on both sides. Any geodesic connecting points in B2

and B1 must run through p.

3 The λ-Decomposition

We now turn to the main arguments of the paper. First, following the ideas in [4], we

establish the decomposition (P,G,S) as a “λ-decomposition” using the function λ in

Definition 3.3 that is defined through two auxiliary functions that view the stable and

unstable parts of any given geodesic. Throughout this section, fix s > 0 such that 2s

is less than the shortest saddle connection of S. Below, we omit in the notation the

dependence of functions on s.

Definition 3.1. We define λuu : GS → [0, ∞) by

λuu(γ ) = |θ(γ , c)| − π

max{s, c} ,

where c ≥ 0 is the 1st time that γ (c) hits a cone point and turns with angle strictly

greater than π (naturally, we set λuu(γ ) = 0 in case c = ∞).
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15170 B. Call et al.

Definition 3.2. We define λss : GS → [0, ∞) by

λss(γ ) = |θ(γ , c)| − π

max{s, |c|} ,

where c ≤ 0 is the most recent time that γ (c) has hit a cone point and turned with angle

strictly greater than π (naturally, we set λss(γ ) = 0 in case c = −∞).

We now define our function λ so that near cone points at which geodesics turn

with angle greater than π , it measures the turning angle at that cone point (multiplied

by a constant), and far from a cone point, it measures both distance and turning angle

from both the previous and next cone point.

Definition 3.3. Let λuu and λss be functions defined in Definitions 3.1 and 3.2,

respectively. We define λ : GS → [0, ∞) by

λ(γ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λss(γ ) if there exists c ∈ (−s, 0] such that |θ(γ , c)| − π > 0,

λuu(γ ) if there exists c ∈ [0, s) such that |θ(γ , c)| − π > 0,

min{λss(γ ), λuu(γ )} otherwise.

Observe that it is well defined when γ (0) is a cone point, as in that case, λuu(γ ) = λss(γ ).

We prove several properties of λ.

Proposition 3.4. If λ(γ ) = 0, then λ(gtγ ) = 0 either for all t ≥ 0 or for all t ≤ 0.

Proof. If λ(γ ) = 0, then γ does not turn at a cone point in the interval (−s, s), and so,

λuu(γ ) = 0 or λss(γ ) = 0. In the 1st case, this implies that γ never turns at a cone point

in the future. Therefore, for all t ≥ 0, λ(gtγ ) = λuu(gtγ ) = 0. A similar argument holds

with t ≤ 0 if λss(γ ) = 0. �

As corollaries, we have the following.

Corollary 3.5.
⋂

t∈R gtλ
−1(0) = Sing.

Corollary 3.6. If λ(γ ) = 0, then d(gtγ , Sing) → 0 either as t → ∞ or as t → −∞.
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Proof. Without loss of generality, assume λ(gtγ ) = 0 for all t ≥ 0. Then, γ does not

turn at a cone point in [0, ∞), and we can define r := max{t : |θ(γ , t)| > π} to be the

most recent cone point in the past at which γ turns. Define a singular geodesic γSing as

γSing(t) = γ (t) for all t > r, and for all cone points t ≤ r, γSing turns with angle π . Then,

gtγ and gtγSing agree on increasingly long intervals, and by Lemma 2.13 for t > r,

dGS(gtγ , Sing) ≤ dGS(gtγ , gtγSing) ≤ e−2(t−r).

The proof if λ(gtγ ) = 0 holds similarly, but sending t → −∞ instead. �

Furthermore, this allows us to show that the pressure gap for the product flow

(condition (3) of Theorem 1.1) is implied by the pressure gap P(Sing, φ) < P(φ) that we

will establish in Section 7.

Proposition 3.7 (Following [5, Proposition 5.1]). Setting �(x, y) = φ(x) + φ(y) and

λ̃(x, y) = λ(x)λ(y), we have P(
⋂

t∈R(gt × gt)(λ̃)−1(0), �) ≤ P(φ) + P(Sing, φ). In particular,

if P(Sing, φ) < P(φ), then P(
⋂

t∈R(gt × gt)(λ̃)−1(0), �) < 2P(φ).

Proof. The variational principle [21, Theorem 9.10] tells us that

P

(⋂
t∈R

(gt × gt)(λ̃
−1), �

)
= sup

{
Pν(�)

∣∣ν is flow invariant and ν

(⋂
t∈R

(gt × gt)(λ̃
−1)

)
= 1

}
,

where Pν(�) := hν(g1 ×g1)+∫
� dν denotes the measure-theoretic pressure of (

⋂
t∈R(gt ×

gt)(λ̃
−1), (gt × gt), �, ν). More generally, this relationship holds for any continuous flow,

continuous potential, and compact, flow-invariant subset.

Consequently, we let ν be an invariant measure supported on
⋂

t∈R(gt ×
gt)(λ̃)−1(0) and let

A =
⋂
t∈R

(gt × gt)(λ̃)−1(0) ∩ (Reg × Reg).

We will show that ν(A) = 0 by showing that it contains no recurrent points. Assume

for contradiction that (γ1, γ2) ∈ A is a recurrent point, and then assume without loss

of generality that λ(γ1) = 0. Since γ1 /∈ Sing, it follows that dGS(γ1, Sing) = c > 0,

which from recurrence, implies that there exists a sequence tk → ∞ such that

dGS(gtk
γ1, Sing) > c

2 , with a similar claim holding in backwards time. However, we also

know that dGS(gtγ1, Sing) → 0 as t → ∞, or as t → −∞ by Corollary 3.6. Thus, we have
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15172 B. Call et al.

arrived at a contradiction. Hence, ν is supported on the complement of Reg×Reg, which

is (Sing × GS) ∪ (GS × Sing).

Thus,

P

(⋂
t∈R

(gt × gt)(λ̃
−1(0)), �

)
≤ P ((Sing × GS) ∪ (GS × Sing), �) ≤ P(Sing, φ) + P(GS, φ).

The 1st inequality is by the variational principle. The 2nd inequality is due to the fact

that the pressure of the union of two compact invariant sets is the maximum of the

pressure of each individual set [18, Theorem 11.2(3)], and in this case, the pressure of

each component of the union is at most P(Sing, φ) + P(GS, φ) by [21, Theorem 9.8(v)]. �

We have also constructed λ so that it is lower semicontinuous.

Lemma 3.8. Let s > 0 be such that 2s is less than the shortest saddle connection of S.

Then, λ defined in Definition 3.3 is lower semicontinuous.

Proof. Let γ ∈ GS. We show that for any ε > 0, there exists δ > 0 such that λ(γ ) − ε <

λ(ξ) for all ξ ∈ GS such that dGS(γ , ξ) < δ. To ease the arguments below slightly, we

work in S̃ with lifts γ̃ , ξ̃ so that dGS̃(γ̃ , ξ̃ ) = dGS(γ , ξ). Recall that by Lemma 2.11, if

dGS̃(γ̃ , ξ̃ ) < δ then dS̃(γ̃ (0), ξ̃ (0)) < 2δ.

If λ(γ ) = 0, then we are done as λ is a non-negative function. Therefore, for the

rest of the argument, we assume that λ(γ ) > 0.

Case 1: Suppose there exists c ∈ (−s, s) such that ψ := |θ(γ̃ , c)| − π > 0. Denote

γ̃ (c) = p. We show that there exists δ > 0 such that p ∈ ξ̃ ((−s, s)).
Let C1 be the cone around γ̃ ((c, s)) with vertex p and angle ψ ′ = min{ψ

2 , π
4 }. Let

C2 be the cone around γ̃ ((−s, c)) with vertex p and angle ψ ′. (See Figure 2.) Set

δ = 1

2
min

{
1

8
e−2s(s − |c|) sin ψ ′, 1

2
(s − dS(γ̃ (0), p)), min{1, εs/8}(2 + e2|c|)−1

∫ s−|c|
0

2te−2t dt

}
.

(3)

Then, we choose u1 = c+s
2 , u2 = c−s

2 and δ1 = s−c
4 sin ψ ′, δ2 = c+s

4 sin ψ ′ > 0 so that

B1 := B(γ̃ (u1), δ1) ⊂ C1 ∩B(γ̃ (0), s) and B2 := B(γ̃ (u2), δ2) ⊂ C2 ∩B(γ̃ (0), s). By Lemmas 2.11

and 2.14, since δ < 1
8e−2s(s − |c|) sin ψ ′, if dGS̃(γ̃ , ξ̃ ) < δ, then ξ̃ passes through B1 and B2.

Since any two points in a CAT(0)-space are connected by a unique geodesic segment and

by our construction of C1 and C2, we obtain that if dGS̃(γ̃ , ξ̃ ) < δ, then ξ̃ passes through

p. Furthermore, since 2δ + dS(γ̃ (0), p) < s, by Lemma 2.11 and the triangle inequality
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Unique Equilibrium States for Translation Surfaces 15173

for the triangle with vertices ξ̃ (0), γ̃ (0), and p, we have p ∈ ξ̃ ((−s, s)) if dGS̃(γ̃ , ξ̃ ) < δ. Let

t0 ∈ (−s, s) be such that ξ̃ (t0) = p. Moreover, |t0 − c| ≤ 2δ.

By the triangle inequality,

dS̃(ξ̃ (t0 + t), γ̃ (c + t)) ≤ dS̃(ξ̃ (t0 + t), ξ̃ (c + t)) + dS̃(ξ̃ (c + t), γ̃ (c + t)) = |t0 − c|
+ dS̃(ξ̃ (c + t), γ̃ (c + t)).

Let ξ̃1 = gt0
ξ̃ and γ̃1 = gcγ̃ . Then, by the above inequality and Lemma 2.14,

dGS̃(ξ̃1, γ̃1) ≤ 2δ + e2|c|δ = (2 + e2|c|)δ. (4)

Moreover, for all t ∈ (0, s − c], we obtain that

dS̃(ξ̃1(t), γ̃1(t)) =
⎧⎨⎩ 2t if α ≥ π ,

2t sin(α/2) if 0 ≤ α ≤ π ,

where α is the (unsigned) angle between the outward trajectories of γ̃1 and ξ̃1 from the

cone point p.

If α ≥ π , then dGS̃(ξ̃1, γ̃1) ≥ ∫ s−c
0 2te−2tdt, which is not possible by (4) and the

choice of δ (see (3)).

Consider α ∈ [0, π). Then we have that

sin(α/2) < δ(2 + e2|c|)
(∫ s−c

0
2te−2t dt

)−1

. (5)

Let β be the (unsigned) angle between the inward trajectories γ̃1 and ξ̃1 at p.

Similarly to the argument above, we obtain that for δ as defined in (3),

sin(β/2) < δ(2 + e2|c|)
(

−
∫ 0

−s−c
2te2t dt

)−1

. (6)

Using (5) and (6),

|λ(γ ) − λ(ξ)| = 1

s

∣∣∣|θ(γ̃ , c)| − |θ(ξ̃ , t0)|
∣∣∣ ≤ 1

s
(α + β) ≤ Cδ,

where C = 8
s (2 + e2|c|)

(∫ s−|c|
0 2te−2t dt

)−1
. Thus, for our choice of δ (see (3)), we have

|λ(γ ) − λ(ξ)| < ε.

Case 2: Assume there exists c1 ≤ −s and c2 ≥ s such that ψ1 := |θ(γ̃ , c1)| − π > 0

and ψ2 := |θ(γ̃ , c2)| − π > 0. Denote γ̃ (c1) = p1 and γ̃ (c2) = p2.
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15174 B. Call et al.

Let C1 be the cone around the segment γ̃ ((c1, −s]) if c1 	= −s or γ̃ ((−2s, −s))

otherwise with vertex p1 and angle ψ ′ = min{ψ1,ψ2,π}
4 . Let C2 be the cone around the

segment γ̃ ([s, c2]) if c2 	= s or γ̃ ((s, 2s)) otherwise, with vertex p2 and angle ψ ′. Set

c = min{|c1|, c2} and δ = 1

2
min

{
1

8
e−2s(c − s) sin ψ ′, min{1, εc/8}(2e2c + 1)−1

∫ ∞
c

2te−2t dt
}

.

(7)

Similar to Case 1, by Lemmas 2.11 and 2.14 and the choice of δ in (7), if dGS̃(γ̃ , ξ̃ ) < δ

then ξ̃ passes through p1 and p2. In particular, γ̃ and ξ̃ share a geodesic connecting p1

and p2. Therefore, there exists d such that gdξ̃ (t) = γ̃ (t) for t ∈ [c1, c2]. Let t1 and t2 be

such that ξ̃ (t1) = p1 and ξ̃ (t2) = p2. Then, |t1 − c1| ≤ 2e2|c1|δ and |t2 − c2| ≤ 2e2c2δ so

|d| ≤ 2e2cδ. Moreover, by the triangle inequality,

dGS̃(gdξ̃ , γ̃ ) ≤ (2e2c + 1)δ. (8)

Let α1 and α2 be the (unsigned) angles between the inward and outward

trajectories of gdξ̃ and γ̃ at p1 and p2, respectively. Similarly to Case 1, for our choice of

δ, we have 0 ≤ α1, α2 ≤ π ,

sin(α1/2) ≤ δ(2e2c + 1)

(
−

∫ ∞

c2

2te2t dt
)−1

and

sin(α2/2) ≤ δ(2e2c + 1)

(∫ ∞

c1

2te−2t dt
)−1

.

Therefore,

|λss(γ ) − λss(ξ)| ≤ Cδ and |λuu(γ ) − λuu(ξ)| ≤ Cδ,

where C = 8
c (2e2c + 1)

(∫ ∞
c 2te−2tdt

)−1
.

Thus, if t1 = c1 + d ≤ −s and t2 = c2 + d ≥ s, then λ(ξ) = min{λss(ξ), λuu(ξ)} and

we have |λ(γ ) − λ(ξ)| ≤ Cδ < ε.

Otherwise, λ(ξ) ≥ min{λss(ξ), λuu(ξ)} and we have λ(ξ) ≥ λ(γ ) − Cδ > λ(γ ) − ε. �

Remark. Note that for this construction of λ, we do not in general have upper

semicontinuity. To see this, consider a geodesic γ that turns with angle greater than

π at times −s and c for some c > 0. Then, for all r ∈ (0, s], λ(g−rγ ) = λss(g−rγ ), while
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λ(γ ) = min{λss(γ ), λuu(γ )}. Therefore, if λuu(γ ) < λss(γ ), we have that

λ(γ ) = λuu(γ ) < λss(γ ) = lim
r↓0

λss(g−rγ ) = lim
r↓0

λ(g−rγ ).

This contradicts upper semicontinuity of λ.

Following Section of [4], or Definition 3.4 in [5] (and formalizing the idea

presented in Section 2.1), we define

G(η) =
{
(γ , t)

∣∣ ∫ ρ

0
λ(gu(γ )) du ≥ ηρ and

∫ ρ

0
λ(g−ugt(γ )) du ≥ ηρ for ρ ∈ [0, t]

}

and

B(η) =
{
(γ , t)

∣∣ ∫ ρ

0
λ(gu(γ )) du < ηρ

}
.

The decomposition we will take is (P,G,S) = (B(η),G(η),B(η)) for a sufficiently small

value of η that will be determined below. We reiterate that because of our choice of

decomposition, we do not need to consider the sets of orbit segments denoted by [P], [S]

because of [5, Lemma 3.5].

While near cone points, positivity of λ only gives us information about the

closest cone point, and far from cone points, it gives us information about cone points

on both sides. The following propositions help us quantify these relationships. Let θ0

be as in Lemma 2.15(d).

Proposition 3.9. If λ(γ ) > η, then there is a cone point in γ [− θ0
2η

, θ0
2η

] with turning angle

at least sη away from ±π . In particular, if (γ , t) ∈ G(η), then there exist t1, t2 ∈ [− θ0
2η

, θ0
2η

]

such that γ (t1), γ (t + t2) ∈ Con, with the turning angles at these cone points at least sη

away from ±π .

Proof. Since λ(γ ) > η, either λuu(γ ) > η or λss(γ ) > η. If λuu(γ ) > η, then by

Definition 3.3, there is a c ≥ 0 such that γ (c) ∈ Con and λuu(γ ) = |θ(γ ,c)|−π
max{s,c} . The turning

angle at γ (c) satisfies |θ(γ , c)| − π ≤ θ0/2. Thus,

η < λuu(γ ) ≤ |θ(γ , c)| − π

c
≤ θ0/2

c
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and 0 ≤ c ≤ θ0
2η

. Furthermore,

η < λuu(γ ) ≤ |θ(γ , c)| − π

s

so the turning angle of γ at c differs from π by at least sη.

A similar argument applies if λss(γ ) > η. �

Finally, we collect a statement we will need in Section 7.

Lemma 3.10. Given any η > 0, there exists a δ > 0 such that λ(γ ) < η for all

γ ∈ B(Sing, 2δ).

Proof. Let η > 0 be given, and suppose without generality, it is small enough that
sη
32 < 1. We argue in S̃. Suppose γ̃ ∈ B(Sing, 2δ) and, in particular, that ξ̃ ∈ Sing with

dGS(γ̃ , ξ̃ ) < 2δ. We choose δ <
sθ0

64e4θ0/η and toward a contradiction suppose that λ(γ̃ ) >
η
2 .

(Recall that s is specified in Lemma 3.8, and η0 is specified in Lemma 2.15(d).)

Since λ(γ̃ ) >
η
2 , by Proposition 3.9, there exists a cone point in γ̃ [− θ0

η
, θ0

η
] at

which γ̃ turns with angle at least sη
2 away from ±π . Say γ̃ hits that cone point at time

t0 ∈ [− θ0
η

, θ0
η

].

As dGS̃(γ̃ , ξ̃ ) < 2δ, by Lemma 2.14,

dGS̃

(
g− 2θ0

η

γ̃ , g− 2θ0
η

ξ̃

)
< 2δe

4θ0
η and dGS̃

(
g 2θ0

η

γ̃ , g 2θ0
η

ξ̃

)
< 2δe

4θ0
η .

Then, by Lemma 2.11,

dS̃

(
γ̃

(
−2θ0

η

)
, ξ̃

(
−2θ0

η

))
< 4δe

4θ0
η and dS̃

(
γ̃

(
2θ0

η

)
, ξ̃

(
2θ0

η

))
< 4δe

4θ0
η .

Consider the geodesic segment c connecting ξ̃ (−2θ0
η

) and γ̃ (t0). The segment c

and γ̃ [−2θ0
η

, t0] agree at t0 and at time −2θ0
η

, at least θ0
η

away with respect to dS̃, are at

most 4δe
4θ0
η apart. Comparing to a Euclidean triangle and using the CAT(0) property, the

angle between these segments at γ̃ (t0) is at most 2 sin−1[(4δe
4θ0
η )/(2 θ0

η
)]. By our choice

of δ, this is less than 2 sin−1[ sη
32 ] <

sη
8 . The same argument applies to the angle between

γ̃ [t0, 2θ0
η

] and the segment c′ from γ̃ (t0) to ξ̃ (
2θ0
η

).

At t0, γ̃ turns with angle at least sη
2 away from ±π . Therefore, the concatenation

of c with c′ turns with angle at least π + sη
4 on both sides and hence is geodesic. By
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uniqueness of geodesic segments in S̃, ξ [−2θ0
η

, 2θ0
η

] must agree with this concatenation.

But this contradicts the fact that ξ ∈ Sing. Therefore, λ(γ ) ≤ η
2 < η as desired. �

4 G(η) has Weak Specification (at All Scales)

The goal of this section is to obtain Corollary 4.6, which shows that G(η) has weak

specification at all scales.

Lemma 4.1 (Compare with Lemma 3.8 in [16]). Let x ∈ S and β be a geodesic ray with

β(0) = x. Then, for any ε > 0, there exist T0(ε) and a geodesic c which connects x with

a point z ∈ Con so that the length of c is at most T0(ε) and 	
x(β, c) < ε where 	

x(a, b) is

the angle at x between geodesic segments a and b.

Proof. Let x̃ ∈ S̃ be a lift of x and β̃ a lift of β with β̃(0) = x̃. Denote by C ε
2
(x̃, β̃) the cone

around β with vertex x̃ and angle ε
2 . Choose T0 = T0(ε) so large that an angle-ε sector

of a radius-T0 Euclidean ball contains a ball of radius much larger than the diameter

of S. Then I = BT0
(x̃) ∩ C ε

2
(x̃, β̃) is at least as large as this Euclidean sector and so must

contain a fundamental domain of S. Then C̃on∩Int(I) 	= ∅, so let z̃ ∈ C̃on∩Int(I) such that

z̃ is closest to x̃. The segment c̃ = x̃z̃ is a geodesic of length at most T0. The projection of

c̃ to S is the desired geodesic. �

Lemma 4.2. For any δ > 0, there exists T1 = T1(δ) such that for any t > 0 and (γ , t) ∈
G(η), (γ , t) is δ-shadowed by a saddle connection path γe in the following sense:

• �(γe) ≤ t + 2T1;

• there exists s0 ∈ [0, T1] with the property that if γ c
e is any extension of γe to a

complete geodesic then dGS(gu(γ ), gu(gs0
(γ c

e ))) ≤ δ for all u ∈ [0, t].

In particular, if t >
θ0
η

, there exists a closed interval I ⊃ [ θ0
2η

, t − θ0
2η

] such that γe(s0 + u) =
γ (u) for u ∈ I.

Proof. As usual, we prove the result in S̃. Let T = max{− log(δ), θ0
2η

, �0
4 } where θ0 and �0

are from Lemma 2.15. By Lemma 2.12, if we construct γ̃e such that dS̃(γ̃ (u), γ̃e(s0+u)) < δ
2

for all u ∈ [−T, t + T], then dGS(gu(γ ), gu(gs0
(γ c

e ))) ≤ δ for all u ∈ [0, t]. (See Figure 3 for

the constructions in this proof.)

By Proposition 3.9, there exist t0, t1 ∈ [− θ0
2η

, θ0
2η

] such that γ̃ (t0), γ̃ (t + t1) ∈ C̃on,

|θ(γ̃ , t0)|−π ≥ sη and |θ(γ̃ , t+t1)|−π ≥ sη. Thus, there exist s1 ∈ [−T, θ0
2η

] and s2 ∈ [− θ0
2η

, T]

such that γ̃ (s1), γ̃ (t + s2) ∈ C̃on and
(
γ̃ ([−T, s1)) ∪ γ̃ ((t + s2, t + T])

) ∩ C̃on = ∅.
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15178 B. Call et al.

Fig. 3. The construction of γe in Lemma 4.2 around the left endpoint of γ . The sequence of α-cones

featured in the proof is shaded.

If s1 = −T, then define γ̃e(u−s1) = γ̃ (u) for u ∈ [s1, t+s2]. Assume s1 > −T. Let η0

be as in Lemma 2.15(b). Choose α <
�0

4(T+ θ0
2η

)
min{η0, δ

2(
θ0
2η

+T)
}. Let C be the cone in S̃ around

γ̃ ([−T, s1]) with angle α/2. Note that α < η0, so any geodesic segment from a point in C to

γ̃ (s1) can be concatenated with γ̃ ([s1, t]) to form a geodesic. By Lemma 4.1, there exists

T0 = T0(α
2 ) ≥ T + θ0

2η
and a point p̃1 in C̃on ∩ C such that dS̃(p̃1, γ̃ (s1)) ≤ T0. Choose p̃1 as

in the previous sentence minimizing the distance to γ̃ ([−T0, s1]). If dS̃(p̃1, γ̃ (s1)) ≥ T + θ0
2η

,

then let the initial segment of γ̃e be the geodesic segment [p̃1, γ̃ (s1)].

Otherwise, we repeat the argument above, applying Lemma 4.1 to construct an

angle-α/2 cone centered around the geodesic segment making angle π+ α
2 with [p̃1, γ̃ (s1)].

We get a point p̃2 ∈ C̃on in this cone with dS̃(p̃1, p̃2) ≤ T0, again chosen to minimize

the distance to γ̃ ([−T0, s1]). If dS̃(p̃2, γ̃ (s1)) ≥ T + θ0
2η

, then let the initial segment of γ̃e

be the concatenation of geodesic segments [p̃2, p̃1] and [p̃1, γ̃ (s1)]. This concatenation is

a geodesic by the choice of α and the construction of the cone. Otherwise, repeat the

procedure at p̃2 and so on.

We will need to repeat this procedure at most
T+ θ0

2η

�0
times. We extend the

beginning of γ̃e constructed here with [γ̃ (s1), γ̃ (t+s2)] and then extend beyond γ̃ (t+s2) (if

needed) similarly to the procedure at γ̃ (s1). Since the turning angles at each cone point

are at least π , we obtain a saddle connection path γ̃e.

Let T1 = T + θ0
2η

+ T0. Let s0 be such that γ̃e(s0 + s1) = γ̃ (s1). Then s0 ∈ [0, T1].

For u ∈ [s1, s2], dS̃(γ̃ (u), γ̃e(s0 + u)) = 0 < δ
2 , as desired. For u ∈ [−T, s1], note that the

sequence of cones used in the proof have angles α
2 and α <

�0

4(T+ θ0
2η

)

δ

2(
θ0
2η

+T)
. There are at

most
T+ θ0

2η

�0
of these cones, each segment from p̃i to p̃i+1 is at most length T + θ0

2η
, and

we always choose our cone points p̃i as close to γ̃ as we can. Therefore, the distance
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dS̃(γ̃ (u), γ̃s(s0 + u) is bounded by δ
2 for u ∈ [−T, s1]. For the same reason, this bound also

holds for u ∈ [s2, t + T], finishing the proof. �

Lemma 4.3 (Compare with Lemma 3.9 in [16]). Let N = [ 4π
η0

] + 3 where η0 is from

Lemma 2.15(c). Let q ∈ Con. Then there exist N saddle connections σ1, σ2, . . . , σN

emanating from q with the following property.

For any geodesic segment γ with endpoint q, the concatenation of γ with at least

one σi is also a local geodesic.

Proof. We have L(q) = 2π + α ≥ 2π + η0. Divide the space of directions at q into

intervals of size no more than α
2 ; at most �2π+α

α/2 � ≤ N intervals are needed. Using

Lemma 4.1, pick a saddle connection emanating from q with direction in each of these

intervals. These are the σi.

The concatenation of γ and some saddle connection σi is a geodesic if and only if

ci lies outside of the π-cone of directions at q around γ . The complement of this cone in

the space of directions at q is an interval of size L(q) − 2π = α and must therefore fully

contain one of our α
2 -size intervals. The σi chosen in this interval geodesically continues

γ as desired. �

Lemma 4.4 (Compare with Corollary 3.1 in [16]). For any two parametrized saddle

connections σ , σ ′ on S, there exists a geodesic segment γ that first passes through σ

and eventually passes through σ ′.

Proof. Let α be a closed geodesic that turns with angle greater than π at a cone

point p (such α exists by Lemma 2.20). Denote by σ̃ the lift of σ to S̃ that has the

starting point ã and the endpoint b̃. Consider a parametrized complete lift α̃ of α such

that it is disjoint from σ̃ and its positive endpoint is contained in the complement

of the cone around [ã, b̃] with vertex b̃ and angle π . Denote by c̃t : [0, �t] → S̃ the

geodesic that connects ã with α̃(t). By the choice of the lift α̃, there is a time t0

such that for all t ≥ t0, c̃t passes through b̃ and that c̃t0
only shares its endpoint

with α̃. �

We now need the following fact.

Sublemma. There exists t1 > t0 such that c̃t1
intersects the geodesic segment

[α̃(t0), α̃(t)] in a positive-length segment.
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15180 B. Call et al.

Proof of Sublemma. Consider the geodesic triangle in S̃ with vertices ã, α̃(t0) and α̃(t)

for t > t0. As t increases, the length of the side [α̃(t0), α̃(t)] increases without bound while

the length of [ã, c̃(t0)] is fixed, so the length of c̃t = [ã, α̃(t)] must also increase without

bound once t is sufficiently large, by the triangle inequality. The comparison triangles in

R2 will have one side of fixed length while the other two become very long. The angle at

the vertex of the comparison triangle where the long sides meet must therefore become

arbitrarily small.

At each lift of the cone point p that α passes through, α̃ has turning angle π + θ

for some θ > 0. Let T be so large that the angle noted above in the Euclidean comparison

triangle is < θ . As S̃ is CAT(0), the original triangle in S̃ has angles no larger than those

in the comparison triangle. Thus, the angle between c̃t and [α̃(t0), α̃(t)] will be less than

θ for all t ≥ T. Let t′ be any time greater than T at which α̃ passes through a lift of the

cone point, and let t1 > t′. Since α̃ turns with excess angle θ at α̃(t′), the concatenation of

c̃(t′) and α̃([t′, ∞)) is a geodesic ray. Therefore, c̃t1
and [α̃(t0), α̃(t)] intersect in a positive-

length segment. �

For t1 as in the sublemma, the projection of c̃t1
to S is a local geodesic that first

passes through σ and eventually through a piece of α. By extending the resulting local

geodesic along α, we can make sure that it passes through the whole curve α. We denote

the resulting local geodesic by g1.

We apply the above argument to σ ′ and α with their orientations reversed to

obtain a local geodesic g2 that connects these curves.

The concatenation of g1 and g2 (with its orientation reversed) has the desired

property.

Repeating the proof of Proposition 3.2 in [16] and replacing [16, Lemma 3.9]

by Lemma 4.3 and [16, Corollary 3.1] by Lemma 4.4, we obtain Proposition 4.5 that

strengthens Lemma 4.4. We include the proof of the proposition for completeness.

Proposition 4.5. (Compare with Proposition 3.2 in [16]) There exists a constant

C(S) > 0 so that the following holds.

For any two parametrized saddle connections σ , σ ′ on S, there exists a geodesic

segment γ that first passes through σ and eventually passes through σ ′ and that is of

length at most C(S) + �(σ ) + �(σ ′).

Proof. Recall that S has only finitely many cone points. By Lemma 4.3, there are

N0 = N0(S) parametrized saddle connections σ1, σ2, . . . , σN0
with the property that for
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any geodesic segment with endpoint in Con (in particular, any saddle connection) the

concatenation of it with at least one σi is a local geodesic. By Lemma 4.4, for each

pair (σi, σj), there is a local geodesic cij that first passes through σi and eventually

through σj. Since there are only finitely many pairs (σi, σj), there exists a constant C(S)

such that �(cij) ≤ C(S). Thus, for any two parametrized saddle connections σ , σ ′, we

do the following. First, we connect the endpoint of σ to σi for some i and the starting

point of σ ′ (the endpoint of the saddle connection with the reversed parametrization

of σ ′) to σj for some j so that the results of concatenations are local geodesics. Then,

the concatenation of σ with cij followed by the concatenation with σ ′ is the desired

geodesic segment that first passes through σ and eventually through σ ′ of length at most

C(S) + �(σ ) + �(σ ′). �

Using Lemma 4.2 and Proposition 4.5, we obtain the weak specification property

on G(η) at all scales.

Corollary 4.6. (Weak specification) For all δ > 0, there exists T = T(η, δ, S) > 0 such

that for all (γ1, t1), . . . , (γk, tk) ∈ G(η) there exist 0 = s1 < s2 < . . . < sk and a geodesic γ on

S such that for all i = 1, . . . , k we have si+1 − (si + ti) ∈ [0, T] and dGS(gu(γi), gu(gsi
(γ )) < δ

for all u ∈ [0, ti].

Proof. We can take T = 2T1 + C(S) where T1 is as in Lemma 4.2 and C(S) is as in

Proposition 4.5. We omit the proof here as it is a simplified version of the proof of

Proposition 5.6. �

5 G(η) has Strong Specification (at All Scales)

The goal of this section is to upgrade the weak specification property of Corollary 4.6 to

strong specification (Proposition 5.6), in which we have more precise control over when

our shadowing geodesic shadows each segment.

As η is fixed throughout, we write G := G(η).

Lemma 5.1. If G ⊂ R≥0 	⊂ cN for all c > 0, then for all δ > 0, there exist x, y ∈ G and

n, m ∈ N such that 0 < nx − my < δ.

Proof. Let x denote the smallest nonzero element of G, which exists, as otherwise we

are immediately done. Now, there are three cases.
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15182 B. Call et al.

First, assume there exists y ∈ G such that y
x /∈ Q. Now take q ∈ N large enough

so that x
q < δ, and so that there is p ∈ N with |y

x − p
q | < 1

q2 by Dirichlet’s theorem. Then,

this implies that

|qy − px| <
x

q
< δ.

In the 2nd case, suppose that for all y ∈ G, y
x is rational, and when written in lowest

terms, the denominators can be arbitrarily large. Then, take n such that x
n < δ and y ∈ G

with y
x = p

q in lowest terms for some q > n. Then, as p is invertible in Z/qZ, we can take

m to be a positive integer such that mp = 1 (mod q). It follows that

∣∣∣∣mp − 1

q
x − my

∣∣∣∣ = x

q
< δ.

Finally, in the 3rd case, y
x is always rational, but with denominators bounded

above by M. Then, G ⊂ x
M!N, a contradiction. �

Lemma 5.2. Suppose x > y > 0 and x − y = δ. Then, there exists T > 0 such that for

all τ ≥ T and all n ∈ N ∪ {0}, there exists m1, m2 ∈ N such that τ + nδ ≤ m1x + m2y ≤
τ + (n + 1)δ.

Proof. Fix C such that C >
y
δ

+ 2. We claim that T = max{Cy, 1}. Fix τ ≥ T. Now, let

n ∈ N ∪ {0}. Fix k1 to be the largest integer such that k1y ≤ τ + nδ and then choose k2

to be the smallest positive integer such that k1y + k2δ ≥ τ + nδ. Therefore, we see that

k2x + (k1 − k2)y = k1y + k2δ, and so

τ + nδ ≤ k2x + (k1 − k2)y ≤ τ + (n + 1)δ.

Observe that by construction,

k1y + (k2 − 1)δ < τ + nδ < k1y + y,

and consequently, k2 <
y
δ

+ 1. Therefore, by our choices of τ and C,

k1 >
τ + nδ − y

y
>

Cy − y

y
>

y

δ
+ 1.

Thus, k1 − k2 > 0, and we are done. �
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We need the following result of Ricks; we explain the necessary terminology in

the course of applying it.

Theorem 5.3. [19, Theorems 4 and 5] Let X be a proper, geodesically complete, CAT(0)

space under a proper, cocompact, isometric action by a group  with a rank one element,

and suppose X is not isometric to the real line. Then, the length spectrum is arithmetic

if and only if there is some c > 0 such that X is isometric to a tree with all edge lengths

in cZ.

Proposition 5.4. Given δ > 0, there exist two closed saddle connection paths γ , ξ such

that 0 < |�(γ ) − �(ξ)| < δ.

Proof. This follows for translation surfaces by combining Lemma 5.1 with Section 6

of [12] (see hypothesis (T3) and the discussion following [12, Proposition 6.9]).

For general flat surfaces with conical points, this follows from Theorem 5.3.

We outline the reasoning as follows. We say that γ ∈  is rank one if there exists a

geodesic η such that γ η = gtη for some t > 0 and η does not bound a flat half plane, that

is, a subspace isometric to R × [0, ∞). The existence of this follows from the existence

of a closed geodesic which turns with angle greater than π at some cone point (see

Lemma 2.20). Now, the universal cover of a flat surface with cone points is not isometric

to a tree with edge lengths in cZ, and so it follows that the length spectrum is not

arithmetic. The length spectrum is the collection of lengths of hyperbolic isometries in

, which is precisely the set of lengths of closed geodesics, which by Lemma 2.18 is the

set of lengths of closed saddle connection paths. We can now apply Lemma 5.1. �

Proposition 5.5. For all δ > 0, there exists τ = τ(δ) > 0 and δ′ < δ such that for

any τ ′ > τ , any two saddle connections σ , σ ′ and any n ∈ N ∪ {0}, there exists a geodesic

segment ξn that begins with σ and ends with σ ′ with length in [�(σ )+�(σ ′)+τ ′+nδ′, �(σ )+
�(σ ′) + τ ′ + (n + 1)δ′].

Proof. Fix δ > 0, and take γ1, γ2 to be closed geodesics such that 0 < |�(γ1) − �(γ2)| =
δ′ < δ, which exist by Proposition 5.4. Now take τ = 3C(S) + T, where C(S) is from

Proposition 4.5 and T is from Lemma 5.2 applied for �(γ1) and �(γ2).

Consider two saddle connections σ and σ ′, and apply Proposition 4.5 three

times to connect, in sequence, σ to γ1 to γ2 to σ ′ with the geodesic ξ . Furthermore,

�(ξ) = L + �(σ ) + �(γ1) + �(γ2) + �(σ ′) and L ≤ 3C(S). Because the γi are closed geodesics,
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15184 B. Call et al.

there is a geodesic ξk1,k2
that follows the exact path of ξ except that it loops around γi

a total of ki times. In other words, �(ξk1,k2
) = �(ξ) + (k1 − 1)�(γ1) + (k2 − 1)�(γ2). Now let

n ∈ N, and, using Lemma 5.2, take k1, k2 such that

k1�(γ1) + k2�(γ2) ∈ [T + (3C(S) − L) + (τ ′ − τ) + nδ′, T + (3C(S) − L) + (τ ′ − τ) + (n + 1)δ′].

Then ξn := ξk1,k2
satisfies our desired property. �

Proposition 5.6. The collection of orbit segments G = G(η) has strong specification at

all scales. That is, for any ε > 0, there exists τ̂ (ε) > 0 such that for any finite collection

{(γi, ti)}n
i=1 ⊂ G, there exists ξ̂ ∈ GS that ε-shadows the collection with transition time τ̂

between orbit segments. In other words, for 1 ≤ i ≤ n,

dGS(gu+∑i−1
j=1(tj+τ̂ )

ξ̂ , guγi) ≤ εfor 0 ≤ u ≤ ti.

Moreover, for 1 ≤ i ≤ n such that ti >
θ0
η

where θ0 as in Lemma 2.15(d), there exists a

closed interval Ii ⊃ [ θ0
2η

, ti − θ0
2η

] such that ξ̂ (u + ∑i−1
j=1(tj + τ̂ )) = γi(u) for u ∈ Ii.

Proof. By Lemma 4.2, there exists T1 = T1( ε
2 , S) for each i = 1, . . . , n, there exists a

saddle connection path γ e
i such that �(γ e

i ) ≤ ti + 2T1 and there exists si ∈ [0, T1] such

that for any extension γ̂ e
i of γ e

i to a complete geodesic, we have

dGS(gu(γi), gu(gsi
(γ̂ e

i ))) ≤ ε

2
for all u ∈ [0, ti].

Moreover, if ti >
θ0
η

, there exists a closed interval Ii ⊃ [ θ0
2η

, ti − θ0
2η

] such that γ e
i (si + u) =

γi(u) for u ∈ Ii. We will construct our shadowing geodesic by induction. Let τ = τ
(

ε
4

)
,

δ′ < ε
4 be as in Proposition 5.5 applied for δ = ε

4 . Denote T = τ + 3T1.

Thus, for any k = 1, . . . , n − 1 and mk ∈ N ∪ {0}, there exists a geodesic segment

ξk+1 that begins with γ e
k and ends with γ e

k+1 with length �(ξk+1) = �(γ e
k ) + �(γ e

k+1) + T −
(sk+1 − sk) − (�(γ e

k ) − tk) + ck where ck ∈ [mkδ′, (mk + 1)δ′].
Moreover, by Lemma 4.2, for any extension ξ̂k+1 of ξk+1 to a complete geodesic

with ξ̂k+1(u) = ξk+1(sk + u) for all u ∈ [−sk, −sk + �(ξk+1)], we have

dGS(guξ̂k, guγk) ≤ ε

2
for all u ∈ [0, tk] and

dGS(gu(gtk+T+ck
ξ̂k+1), guγk+1) ≤ ε

2
for all u ∈ [0, tk+1]. (9)
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Unique Equilibrium States for Translation Surfaces 15185

We define the sequence mk inductively. Let m1 = 0. In particular, c1 ∈ [0, δ′] ⊂
[0, ε

4 ]. For k > 1, we set

mk = � ε

4δ′ � if (k − 1)
ε

4
−

∑
i≤k−1

ci >
ε

4
, and 0 otherwise,

as this ensures
∣∣∣∑k−1

j=1
ε
4 − cj

∣∣∣ < ε
2 .

Let ξ be a geodesic segment that is a result of gluing ξk and ξk+1 along γ e
k that is

the end of ξk and the beginning of ξk+1 for all k = 2, . . . , n − 1. Let ξ̂ be any extension of

ξ to a complete geodesic with the parametrization such that ξ̂ (−s1) = ξ(0). By the choice

of mk and (9), we obtain for 1 ≤ i ≤ n,

dGS(gu(g∑i−1
j=1(tj+T+ε/4)

ξ̂ ), guγi) ≤ dGS(gu(g∑i−1
j=1(tj+T+cj)

ξ̂ ), guγi) + ε

2
≤ ε for all u ∈ [0, ti].

Thus, ξ̂ is the desired shadowing geodesic. As a result, the collection of orbit

segments G has strong specification at all scales with the specification constant

T + ε
4 . �

We close this section by recording a simple technical modification of

Proposition 5.6, which we will need when we apply specification in Section 7.

Definition 5.7. Let M > 0 and η > 0 be given. We denote by GM(η) the set of all orbit

segments (γ , t) such that there exist t1, t2 with |ti| < M such that (gt1
γ , t − t1 + t2) ∈ G(η).

That is, these are segments that lie in G(η) after making some bounded change to their

endpoints.

Corollary 5.8. Specification as in Proposition 5.6 holds for GM(η), with the constant T

depending on M in addition to the parameters listed in Proposition 5.6.

Proof. This is a simple exercise using Proposition 5.6 and uniform continuity of the

geodesic flow. We give the idea of the proof. Let {(γi, ti)}n
i=1 ⊂ GM(η) be a collection of

segments that we wish to shadow at scale ε. This leads to a collection {(gsi
γi, t′

i)}n
i=1 ⊂

G(η), where |si| ≤ M and |ti − t′
i| ≤ M that we can shadow at any scale as in Proposition

5.6. We choose our new shadowing scale δ so that if dGS(γ , ξ) < δ, then dGS(gtγ , gtξ) < ε

for t ∈ [−M, M], using uniform continuity of the flow. Any geodesic that δ-shadows

{(gsi
γti

, t′
i)} must then ε-shadow our desired collection {(γi, ti)}. �
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6 G(η) has the Bowen Property

In this section, we establish the Bowen property (see Definition 2.9). To do so, we analyze

orbits that stay close to a good orbit segment for some time. This description will allow

us to effectively bound the difference of ergodic averages along these orbits.

Proposition 6.1. For all η > 0, for all sufficiently small ε > 0 (dependent on η), and for

any (γ , t) ∈ G(η) with t > 2 θ0
2η

, we have

Bt(γ , ε) ⊂ C
2ε,

θ0
2η

(γ , t),

where

Bt(γ , ε) = {ξ ∈ GS | dGS(guγ , guξ) < ε for all u ∈ [0, t]}

and

C
2ε,

θ0
2η

(γ , t) =
{
ξ

∣∣ ∃|r| ≤ 2ε such that grξ(u) = γ (u) for all u ∈
[

θ0

2η
, t − θ0

2η

]}
.

Proof. Fix η > 0, and recall Proposition 3.9. Now choose ε > 0 small enough that

s sin(
sη
4 ) > 2εe2(

θ0
2η

+s). (Here, s is the parameter involved in the definition of λ and

fixed in Lemma 3.8.) Consider a cone around some geodesic with angle sη
4 . By an easy

computation, the ball of radius 2εe2(
θ0
2η

+s) with center at distance s from the cone point

along the geodesic is contained in the cone (recall that s > 0 was chosen so that 2s < �0).

Let (γ1, t) ∈ G(η) with t >
θ0
η

be arbitrary. By Proposition 3.9, there exists t0 ∈
[− θ0

2η
, θ0

2η
] such that γ1(t0) ∈ Con and |θ(γ1, t0)|−π ≥ sη. Similarly, there exists t1 ∈ [− θ0

2η
, θ0

2η
]

such that γ1(t + t1) ∈ Con and |θ(γ1, t + t1)| − π ≥ sη.

Now consider γ2 ∈ Bt(γ1, ε). Taking t0 and t1 as above, by Lemmas 2.11 and 2.14,

dS(γ1(t0 − s), γ2(t0 − s)) ≤ 2dGS(gt0−sγ1, gt0−sγ2) ≤ 2dGS(γ1, γ2)e2| θ0
2η

−s| ≤ 2εe2(
θ0
2η

+s) (10)

and

dS(γ1(t +t1+ s), γ2(t + t1+ s))≤ 2dGS(gt1+sgtγ1, gt1+sgtγ2)≤ 2dGS(gtγ1, gtγ2)e2|t1+s| ≤ 2εe2(
θ0
2η

+s).
(11)

Let γ̃1 and γ̃2 be lifts of γ1 and γ2 to GS̃ so that dGS̃(γ̃1, γ̃2) = dGS(γ1, γ2). Let

B1 = B(γ̃1(t0 − s), 2εe2(
θ0
2η

+s)
) and B2 = B(γ̃1(t + t1 + s), 2εe2(

θ0
2η

+s)
). Then, by (10) and

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/17/15155/6701570 by Science Library user on 27 M
arch 2024



Unique Equilibrium States for Translation Surfaces 15187

(11) and the remarks in the 1st paragraph of this proof, γ2 intersects B1 and B2. Since

|θ(γ1, t0)| − π ≥ sη and |θ(γ1, t + t1)| − π ≥ sη, by the choice of ε and the fact that any

two points in a CAT(0)-space are connected by a unique geodesic segment, γ̃2 contains

γ̃1[t0, t + t1]. Moreover, since dGS̃(gt0+sγ̃1, gt0+sγ̃2) ≤ ε and 0 ≤ t0 + s ≤ 2s < t, it follows

that dS(γ̃1(t0+s), γ̃2(t0+s) ≤ 2ε. Thus, there exists r such that |r| ≤ 2ε and grγ2(u) = γ1(u)

for u ∈ [t0, t + t1]. Since t0 ≤ θ0
2η

and t1 ≥ − θ0
2η

, we have completed our proof. �

Proposition 6.2. For all ε, s > 0 and α-Hölder continuous functions φ, there exists

K > 0 such that for all geodesic segments (γ1, t) with t > 2 θ0
2η

, given any γ2 ∈ C2ε,s(γ1, t),

we have

∣∣∣∣∫ t

0
φ(grγ1) − φ(grγ2) dr

∣∣∣∣ ≤ K.

Proof. Let R be the time-shift in the definition of C2ε,s(γ1, t), so that gRγ2(r) = γ1(r) for

r ∈ [s, t − s]. We see that

∣∣∣∣∫ t

0
φ(grγ1) − φ(grγ2) dr

∣∣∣∣ ≤
∣∣∣∣∫ t

0
φ(grγ1) dr −

∫ t−R

−R
φ(gr(gRγ2)) dr

∣∣∣∣
≤

∣∣∣∣∫ t−s

s
φ(grγ1) − φ(gr(gRγ2)) dr

∣∣∣∣ + (4s + 2|R|)‖φ‖.

Since γ1 = gRγ2 on [s, t − s], by Lemma 2.13, we have for all r ∈ [s, t − s],

dGS(grγ1, gr(gR)γ2) ≤ e−2 min{|r−s|,|r−(t−s)|}.

Thus, we obtain

∣∣∣∣∫ t−s

s
φ(grγ1) − φ(gr(gRγ2)) dr

∣∣∣∣ ≤
∫ t−s

s
C(dGS(grγ1, gr(gRγ2)))α dr

≤
∫ t

2

s
Ce−2α(r−s) dr +

∫ t−s

t
2

Ce−2α((t−s)−r) dr

= C

α
(1 − e−α(t−2s))

≤ C

α
.
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15188 B. Call et al.

As a result, since |R| < 2ε, we have

∣∣∣∣∫ t

0
φ(grγ1) − φ(grγ2) dr

∣∣∣∣ ≤ C

α
+ (4s + 4ε)‖φ‖.

�

Corollary 6.3. For all η > 0, there exists ε > 0 such that G(η) has the Bowen property

at scale ε.

Proof. Fix η > 0. Then, choose ε > 0 sufficiently small to apply the previous propo-

sitions. Then, we can take the constant for the Bowen property to be max{K, 2 θ0
η

‖φ‖},
where K is from the previous proposition. Then, the previous proposition gives the

desired bound for orbit segments of length at least θ0
η

, and the triangle inequality gives

the desired bound for any shorter orbit segments. �

7 Establishing the Pressure Gap

In this section, we prove the pressure gap condition of [4] for certain potentials. We then

show that this pressure gap holds in the product space as well. See also the survey by

Climenhaga and Thompson [11, Section 14].

First, we prove the following theorem.

Theorem 7.1. Let φ be a continuous potential that is locally constant on a neighbor-

hood of Sing. Then, P(Sing, φ) < P(φ).

Furthermore, we use the above theorem to note that a pressure gap also holds

for functions that are nearly constant. (See Corollary 7.8.) For a sense of the functions

covered by Theorem 7.1, it may be helpful to think of the special case of a translation

surface. There are infinitely many cylinders in such an S, and the geodesics circling

different cylinders are in different connected components of Sing, so there is significant

flexibility in building a function that satisfies Theorem 7.1 on Sing itself, let alone on

the complement of its neighborhood.

Our argument for Theorem 7.1 closely follows that in Section 8 of [4]. The differ-

ent geometry in our situation calls for somewhat different arguments in Proposition 7.4

and Lemma 7.5, which we present here in full. After these are proved, the argument

hews closely to [4]. We present the main steps of the argument, filling in the details

where a modification is necessary for the present situation.
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For any η > 0, we let

Reg(η) = {γ | λ(γ ) ≥ η}.

We need a pair of lemmas in this section.

Lemma 7.2. Let c be any singular geodesic segment. That is, c is a geodesic segment

such that the turning angle at any cone points it encounters is always ±π . Then c can

be extended to a complete geodesic γ ∈ Sing.

Proof. The extension is accomplished by following the geodesic trajectory established

by c and, whenever a cone point is encountered, continuing the extension so that a

turning angle of π or −π is made. �

Let ∂∞S̃ be the boundary at infinity of S̃, equipped with the usual cone topology

(see, e.g., [3, Section II.8]). Since S is a surface, ∂∞S̃ is a circle. Using this identification,

we can speak of a path in ∂∞S̃ as being monotonic if it always moves in a clockwise or

counterclockwise direction.

The following lemma leverages this structure to provide a way to continuously

move a geodesic in GS̃.

Lemma 7.3. Let γ̃ ∈ GS̃ with γ̃ (t0) = ξ ∈ C̃on. Let ζv be a continuous and monotonic

path in ∂∞S̃ with ζ0 = γ̃ (+∞) such that for all v, the ray connecting ξ with ζv can be

concatenated with γ̃ (−∞, t0) to form a geodesic γ̃v. Then {γv} is a continuous path of

geodesics in GS̃ with dGS̃(γ̃ , γ̃v) nondecreasing in |v|.

Proof. First, that ξ and ζv can be connected with a unique geodesic ray is a standard

fact about CAT(0) spaces [3, Section II.8, Prop. 8.2]. For continuity of γ̃v, we claim that if

v → v0, dS̃(γ̃v(t), γ̃v0
(t)) → 0 uniformly on any [t0, T]. This together with the formula for

dGS̃ will show that dGS̃(γv, γv0
) → 0. To verify the claim, fix T > t0 and ε > 0 and recall

that in the cone topology on ∂∞S̃,

U(γ̃v0
, T, ε) := {ζ ∈ ∂∞S̃ : dS̃(c(T), γ̃v0

(T)) < ε where c is the geodesic ray from ξ to ζ }

is a basic open set around ζv0
= γ̃v0

(+∞) [3, Section II.8]. Therefore, for v sufficiently

close to v0, ζv ∈ U(γ̃v0
, T, ε). But the ray c from ξ to ζv is precisely γ̃v|[t0,+∞). Thus,

dS̃(γ̃v(T), γ̃v0
(T)) < ε. Since the distance between two geodesics is a convex function
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15190 B. Call et al.

of the parameter [3, Section II.2] and dS̃(γ̃v(t0), γ̃v0
(t0)) = 0, for all t ∈ [t0, T], we have

dS̃(γ̃v(t), γ̃v0
(t)) < ε and hence have the desired uniform convergence.

For all t ≤ t0, dS̃(γ̃ (t), γ̃v(t)) = 0. We claim that for t > t0, dS̃(γ̃ (t), γ̃v(t)) is

nondecreasing in |v|. Together with the formula for dGS̃, this will provide the result.

Fix some v∗ 	= 0; without loss of generality, we can assume v∗ > 0. Since ζv is

a monotonic path on ∂∞S̃, v �→ γ̃v(t) sweeps out an arc on the circle of radius t − t0

centered at ξ monotonically (though not necessarily strictly monotonically). We want to

show that for v > v∗, dS̃(γ̃ (t), γ̃v(t)) ≥ dS̃(γ̃ (t), γ̃v∗(t)). This will be trivially true if for all

v > v∗, γ̃v(t) = γ̃v∗(t), so we can assume this is not the case.

Consider the path swept out by v �→ γ̃v(t). Near the point γ̃v∗(t) this path consists

of arcs of two Euclidean circles meeting at γ̃v∗(t). To each side of γ̃v∗(t), the arc belongs

to a circle centered at the cone point on [ξ , γ̃v∗(t)] \ {γ̃v∗(t)} closest to γ̃v∗(t) among those

cone points where [ξ , γ̃v∗(t)] makes angle greater than π on the given side of [ξ , γ̃v∗(t)].

Therefore, in the space of directions at γ̃v∗(t) (this will be the tangent space at γ̃v∗(t)

unless γ̃v∗(t) happens to be a cone point), we have well-defined vectors pointing along

these arcs. Furthermore, since these are arcs of Euclidean circles, the angles between

these two vectors and a vector pointing radially along [γ̃v∗(t), ξ ] are both π
2 . Let W+

and W− be vectors in the space of directions at γ̃v∗(t) pointing along the arc swept out

by v �→ γ̃v(t) with W+ pointing in the direction swept out as v increases past v∗ and

W− in the direction swept out as v decreases from v∗. (Note that v �→ γ̃v(t) may be

constant in v for v near v∗ due to cone points γ̃v∗ encounters at times greater than t. The

vectors W± are tangent to a reparametrization of this curve by arc-length, for instance.)

Similarly, let H± be the vectors in the space of directions at γ̃v∗(t) pointing along the

circle of radius dS̃(γ̃ (t), γ̃v∗(t)) centered at γ̃ (t). Let V1 be the initial tangent vector for

the geodesic segment from γ̃v∗(t) to ξ , and let V2 be the initial tangent vector for the

geodesic segment from γ̃v∗(t) to γ̃ (t). By the CAT(0) condition and using a comparison

triangle for the triangle with vertices ξ , γ̃ (t), and γ̃v∗(t), it is easy to check that the angle

between V1 and V2 is in [0, π
2 ). The angles between W± and V1 and between H± and V2 are

all π
2 as these are angles between a circle and one of its radial segments. (See Figure 4.)

The segment [γ̃v∗(t), γ̃ (t)] lies in the convex hull of γ̃ and γ̃v∗ . By the CAT(0)

condition, it is within the ball of radius t − t0 centered at ξ . So V2, which points along

[γ̃v∗(t), γ̃ (t)], is between V1 and W− in the space of directions at γ̃v∗(t). More precisely, the

space of directions at γ̃v∗(t) is a circle with total length equal to the total angle at γ̃v∗(t).

V2 is between V1 and W− in the sense that it lies within the angle-π
2 arc of directions

connecting V1 and W− in the space of directions. Thus, the angle between V2 and W− is

less than or equal to π
2 and so the angle between V2 and W+ is at least π

2 .
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Fig. 4. The proof that dS̃(γ̃ (t), γ̃v(t)) is non-decreasing in |v|.

If the angle between V2 and W+ is π
2 , then the geodesic segment [γ̃ (t), γ̃v∗(t)] must

run through ξ and then for v > v∗, dS̃(γ̃ (t), γ̃v(t)) = 2(t− t0) = dS̃(γ̃ (t), γ̃v∗(t)). If the angle

is strictly less than π
2 , then in the space of directions, W+ is separated from V2 by H±.

This means that as the path v �→ γ̃v(t) leaves the point γ̃v∗(t) with v increasing, it must

move—at least initially—to the outside of the circle of radius dS̃(γ̃ (t), γ̃v∗(t)) centered

at γ̃ (t). In particular, dS̃(γ̃ (t), γ̃v∗(t)) is locally monotonically increasing near v∗. As v∗

was arbitrary (among v such that γ̃v give geodesic extensions of γ̃ (−∞, t0)), and the path

v �→ γ̃v(t) is connected, this completes our proof of the claim and the lemma. �

The 1st step in the dynamical argument for a pressure gap is the following

technical proposition, which allows us to find a regular geodesic that is close to any

connected component of the δ-neighborhood of the singular set.

Proposition 7.4. Let δ > 0 and 0 < η <
η0
2s be given, where η0 is defined in

Lemma 2.15(b). Then there exists L > 0 and a family of maps �t : Sing → Reg(η) such

that for all t > 3L and for all γ ∈ Sing, if we write c = �t(γ ) then the following are true:

(a) c, gt+t′c ∈ Reg(η) for some |t′| < 4d0;

(b) dGS(grc, Sing) < δ for all r ∈ [L, t − L];

(c) for all r ∈ [L, t − L], grc and γ lie in the same connected component of

B(Sing, δ), the δ-neighborhood of Sing.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/17/15155/6701570 by Science Library user on 27 M
arch 2024
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Furthermore, c(0), c(t + t′) ∈ Con, any c ∈ �t(Sing) is entirely determined (among the

geodesics in �t(Sing)) by the segment c[0, t+t′], and dS̃(γ (0), c(0)), dS̃(γ (t), c(t+t′)) < 2d0

where d0 is as in Lemma 2.15(a).

Remark. The above proposition should be compared with [4, Theorem 8.1], although

we have made two slight adjustments for our situation. First, we cannot guarantee that

gtc ∈ Reg(η), but only that gt+t′c ∈ Reg(η) with uniform control on |t′|. Second, we prove

our result for all t > 3L, instead of 2L. These result in trivial changes to subsequent

estimates in [4]’s argument.

Proof of Proposition 7.4. We begin with a geometric preliminary.

(A) Suppose that c̃1 and c̃2 are geodesic rays in S̃ with c̃1(0) = c̃2(0) and

dS̃(c̃1(l), c̃2(l)) ≤ 3d0. The distance between geodesic rays is a convex

function in a CAT(0) space, so dS̃(c̃1(r), c̃2(r)) ≤ 3d0
l r for all r ∈ [0, l].

Therefore, to ensure that dS̃(c̃1(r), c̃2(r)) < δ
2 for all r ∈ [0, 2T], it is sufficient

to have 3d0
l 2T < δ

2 , or l >
12d0T

δ
.

We now begin the proof in earnest. Let δ > 0 and 0 < η <
η0
2s be given. Let T(δ) be

as in Lemma 2.12. Let

L = max
{

d0,
8d0

η0
, 2T(δ),

12d0T(δ)

δ

}
;

we will highlight the need for each condition on L as we come to it in the proof. Let

t > 3L, and let γ ∈ Sing.

As usual, we work in S̃. Let R be the maximal, isometrically embedded Euclidean

rectangle with γ̃ ([L, t − L]) as one side, containing no cone points in its interior, and

to the right side of γ̃ , with respect to its orientation. (Throughout this proof, refer to

Figure 5. For ease of exposition, we will often refer to the orientation as depicted in that

figure in this proof.) Note that if γ̃ ([L, t − L]) contains any cone points with an angle > π

on the right side of γ̃ , then R has height zero. That t > 3L implies R has positive width.

By maximality of R, there must be cone points on the boundary of R, specifically on the

bottom side of R, as oriented in Figure 5. Let ξ1 be the cone point closest to γ̃ (0) and ξ2

be the cone point closest to γ̃ (t) on the bottom side of R.

Using Lemma 7.2, extend the bottom side of R to a singular geodesic γ̃ ′ that turns

with angle π on the γ̃ side any time it encounters a cone point (i.e., measured from within

the connected component of S̃ \ γ̃ ′ containing γ̃ , the incoming and outgoing directions
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Fig. 5. The construction of c = �t(γ ) in Proposition 7.4.

of γ̃ ′ make angle π at any cone point). If R has height zero, let γ̃ ′ = γ̃ . Parametrize γ̃ ′ so

that γ̃ ′(L) is the lower-left corner of R (and hence γ̃ ′(t − L) is the lower-right corner).

Construct geodesic segments of length d0, starting at the points γ̃ ′(−d0
2 ) and

γ̃ ′(d0
2 ), ending below γ̃ ′, and perpendicular to γ̃ ′ in the sense that for each segment,

both angles between it and γ̃ ′ are ≥ π
2 . Connect the endpoints of these segments with

a geodesic segment, forming a quadrilateral that we denote by Q1. Construct a similar

quadrilateral Q2 based on γ̃ ′ around γ̃ ′(t) on the same side as Q1. Any point in Q1 (resp.

Q2) can be reached from γ̃ ′(0) (resp. γ̃ ′(t)) via a path along γ̃ ′ of length ≤ d0
2 followed by a

perpendicular segment of length ≤ d0. Therefore, for any ζ ∈ Q1, dS̃(γ̃ ′(0), ζ )≤ 3
2d0 < 2d0

(the analogous bound holds for Q2) and the diameter of Qi is bounded by 3d0. Our choice

of L ≥ d0 implies that γ̃ ′(L) and γ̃ ′(t − L) are not in the quadrilaterals.

By their construction using d0 from Lemma 2.15, the quadrilaterals Q1 and Q2

must contain cone points. Let ζ1 be a cone point in Q1 and ζ2 a cone point in Q2. Let

t̂ = dS̃(ζ1, ζ2). Extend the geodesic segment [ζ1, ζ2] to a geodesic c̃, parameterized so that

c̃(0) = ζ1 and c̃(t̂) = ζ2, with turning angles equal to exactly half of the total angle at

each cone point ζ1, ζ2, and any cone points encountered over times (−∞, 0] ∪ [t̂, ∞). Note

that this condition implies that c is determined entirely by the segment [ζ1, ζ2]. Then,

c̃ ∈ Reg(η). An alternate path from ζ1 to ζ2 is to travel ζ1 → γ̃ ′(0) → γ̃ ′(t) → ζ2 that has

length < 4d0 + t. Thus, t̂ < t+4d0. Reversing the roles of c̃ and γ̃ ′ also shows t < t̂+4d0,

so t̂ = t + t′ with |t′| < 4d0. Then, gt+t′ c̃ ∈ Reg(η) as desired.

We claim that [ξ1, ξ2] ⊆ c̃ ∩ R. Consider the geodesic segments [ζ1, ξ1], [ξ1, ξ2],

and [ξ2, ζ2]. The triangle formed by γ̃ ′(0), ζ1 and ξ1 has dS̃(γ̃ ′(0), ξ1) ≥ L and as noted

above, dS̃(γ̃ ′(0), ζ1) < 2d0. Using the CAT(0) property and an easy Euclidean geometry

calculation, the angle between [γ̃ ′(0), ξ1] and [ζ1, ξ1] at ξ1 is less than 4d0
L . Our assumption

that L ≥ 8d0
η0

ensures that this angle is less than η0
2 . An analogous argument bounds the
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15194 B. Call et al.

angle between [ξ2, γ̃ ′(t)] and [ξ2, ζ2]. By Lemma 2.15, there is excess angle at least η0 at

ξ1 and ξ2. At ξ1 (and similarly at ξ2, even if ξ1 = ξ2) the angle our concatenation of

segments makes on the side toward γ̃ is at least the angle γ̃ ′ makes on that side, which

by construction is π . On the side away from γ̃ , the angle our concatenation makes is at

least L(ξ1) − π − η0 > π . The concatenation of [ζ1, ξ1], [ξ1, ξ2], and [ξ2, ζ2] is therefore a

geodesic segment, and hence it must be a subsegment of c̃, proving the claim.

We now need to show, using our choice of L, that dGS̃(gr∗ c̃, Sing) < δ for all

r∗ ∈ [L, t − L]. We do this by showing that for each such r∗, there is a geodesic γ̃ ′ ∈ Sing

such that dS̃(γ̃ ′(r), c̃(r)) < δ
2 for all r ∈ [r∗ −T(δ), r∗ +T(δ)] and then invoking Lemma 2.12.

Let γ̃ ′
0 be the reparameterization of γ̃ ′ so that c̃(r) = γ̃ ′

0(r) whenever c̃(r) ∈ R.

Let [r1, r2] = {r : c̃(r) = γ̃ ′
0(r) ∈ c̃ ∩ R}. (Figure 5 depicts a situation where c̃(r1) = ξ1

and c̃(r2) = ξ2.) For any r ∈ [r1, r2], consider the geodesic rays c̃(−∞, r) and γ̃ ′
0(−∞, r).

They share the point c̃(r) = γ̃ ′
0(r) and at some distance ≥ L ≥ 12d0T(δ)

δ
are both in Q1 and

hence ≤ 3d0 apart (with respect to dS̃). Therefore, by (A) at the start of this proof, for all

r ∈ [r1−2T(δ), r2], dS̃(c̃(r), γ̃ ′
0(r)) < δ

2 . Applying the same argument to the rays c̃(r, ∞) and

γ̃ ′
0(r, ∞), shows dS̃(c̃(r), γ̃ ′

0(r)) < δ
2 for all r ∈ [r1, r2 + 2T(δ)]. As γ̃ ′

0 ∈ Sing, by Lemma 2.12,

dGS̃(gr∗ c̃, Sing) < δ for all r∗ ∈ [r1 − T(δ), r2 + T(δ)].

If this covers all times in [L, t − L], we are done with this part of the proof. If

not, we continue as follows. Assuming r1 − T(δ) > L, consider the geodesic segment

[ζ1, ξ1]. Let [ξ−
1 , ξ1] be the maximal subsegment of [ζ1, ξ1] containing no cone points in its

interior. Extend [ξ−
1 , ξ1] to a geodesic γ̃ ′−1 in Sing lying between c̃ and γ̃ ′

0, parametrized

so that γ̃ ′−1(r1) = ξ1 = c̃(r1). First, note that over the interval [r1 − 2T(δ), r1], γ̃ ′−1(r) is at

least as close to γ̃ ′
0(r) as c̃(r) is, and by our work above, this distance is bounded above

by δ
2 . By Lemma 2.12, dGS̃(gr1−T(δ)γ̃

′
0, gr1−T(δ)γ̃

′−1) < δ. Second, we can argue regarding c̃

and γ̃ ′−1 exactly as we did regarding c̃ and γ̃ ′
0. They form rays with a common endpoint

which after some distance > L are still within 3d0 of each other, which as noted above

allows us to show they are δ close in dGS̃ for an interval of time below r1. This interval

will either extend to L as desired or will end at some r0 − T(δ) where c̃ and γ̃ ′−1 branch

apart at a cone point. We then repeat our argument at that cone point, finding γ̃ ′−2 ∈ Sing

shadowing c̃ further, and so on, until we have reached time L. Exactly the same argument

applies beyond ξ2, constructing γ̃ ′
1, γ̃ ′

2, . . . ∈ Sing as necessary to shadow c̃ in dGS̃ until

time t − L.

It remains to establish that for all r ∈ [L, t − L], grc̃ and γ̃ lie in the same

connected component of B(Sing, δ). We do this by showing that one can get from γ̃

to grc̃ by a series of “moves”, each of which can be realized by a continuous path in

B(Sing, δ).
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Move 1: geodesic flow

If γ̃ ∈ Sing, then for all r, grγ̃ ∈ Sing with the flow itself providing a continuous

path between the two, so γ̃ and grγ̃ are both in the same connected component of Sing

itself and hence of B(Sing, δ).

Move 2: “pivot”

Suppose γ̃i, γ̃i+1 ∈ Sing with γ̃i(0) = γ̃i+1(0) = ξ ∈ C̃on, dGS̃(γ̃i, γ̃i+1) < δ, and

suppose that the angle between γ̃i and γ̃i+1 at ξ is less than L(ξ) − 2π . Note that

any geodesic ray starting from ξ that lies between γ̃i(−∞, 0) and γ̃i+1(−∞, 0) can be

concatenated with γ̃i(0, +∞) to form a geodesic. Similarly, any ray between γ̃i(0, +∞)

and γ̃i+1(0, +∞) can be concatenated with γ̃i+1(−∞, 0) to form a geodesic.

Let γ̃i+1 · γ̃i be the concatenation of γ̃i+1(−∞, 0] with γ̃i[0, +∞). Note that

dGS̃(γ̃i, γ̃i+1 · γ̃i) and dGS̃(γ̃i+1 · γ̃i, γ̃i+1) are both less than dGS̃(γ̃i, γ̃i+1) and hence less

than δ. Indeed, the integrals computing dGS̃(γ̃i, γ̃i+1 · γ̃i) and dGS̃(γ̃i+1 · γ̃i, γ̃i+1) will

each match the integral to compute dGS̃(γ̃i, γ̃i+1) on one side of t = 0, and will

replace the integral on the other side of t = 0 by zero, if anything decreasing the

distance.

We “pivot” from γ̃i to γ̃i+1 in two steps. First, let ζv be a continuous and

monotonic path in ∂∞S̃ from ζ0 = γ̃i(−∞) to ζ1 = γ̃i+1(−∞). Apply Lemma 7.3 to

get a continuous path v �→ c̃v from γ̃i to γ̃i+1 · γ̃i such that for all v, dGS̃(γ̃i, c̃v) ≤
dGS̃(γ̃i, γ̃i+1 · γ̃i) < δ. Second, let ζ ′

v be a continuous and monotonic path from γ̃i(+∞)

to γ̃i+1(+∞), and apply Lemma 7.3 to get a continuous path v �→ c̃′
v from γ̃i+1 · γ̃i to γ̃i+1.

Again, for all v, dGS̃(c̃′
v, γ̃i+1) < dGS̃(γ̃i+1 · γ̃i, γ̃i+1) < δ; this time, we apply the distance

nonincreasing property obtained in Lemma 7.3 to the reverse of the path v �→ c̃′
v, which

continuously moves from γ̃i+1 to γ̃i+1 · γ̃i. Overall, we have a path of geodesics that

remains in B(Sing, δ) throughout.

Move 3: “slide”

Suppose that R is an isometrically embedded Euclidean rectangle in S̃. (Note

that this implies R contains no cone points in its interior.) Let γ̃ , γ̃ ′ ∈ Sing be geodesics

that extend the top and bottom sides of R, respectively, with dGS̃(γ̃ , γ̃ ′) < δ. Let {cv} be

a continuous path of horizontal (i.e., parallel to γ̃ and γ̃ ′ within R) geodesic segments

connecting the two sides of R, which move monotonically downward through R, with

c0 = γ̃ ∩ R and c1 = γ̃ ′ ∩ R.

For each v, let γ̃ u
v be the “uppermost” geodesic extension of cv, that is, the

extension which turns with angle π on the γ̃ -side at any cone point it hits. Let γ̃ l
v be

the “lowermost” geodesic extension of cv, that is, the extension that turns with angle π
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15196 B. Call et al.

on the γ̃ ′-side at any cone point it hits. Since the distance between geodesics is a convex

function and since cv is parallel to γ̃ and γ̃ ′ over R, both γ̃ u
v and γ̃ l

v lie between γ̃ and γ̃ ′.
If γ̃ u

v = γ̃ l
v, set γ̃v = γ̃ u

v = γ̃ l
v. This happens if and only if γ̃v hits no cone points.

Since there are countably many cone points in S̃, there is a countable set {vn} ⊂ [0, 1]

for which γ̃ u
vn

	= γ̃ l
vn

. Let {In} be a corresponding collection of closed real intervals with∑ |In| = 1. Cut [0, 1] at each vn and glue in the interval In, resulting in an interval of

length 2. Adjust the subscripts where γ̃v has already been defined accordingly. For each

n, if In = [an, bn] set γ̃an
= γ̃ u

vn
and γ̃bn

= γ̃ l
vn

. For all v ∈ In, use Lemma 7.3 to fill in a

continuous path v �→ γ̃v from γ̃an
to γ̃bn

.

The result is a path v �→ γ̃v from γ̃ to γ̃ ′ that we claim is continuous. Continuity

at any v0 that is in the interior of one of the inserted intervals In is provided by

Lemma 7.3. If v0 is on the boundary of some In and v approaches v0 from inside In,

Lemma 7.3 again applies. Otherwise, γ̃v0
is in Sing and as v → v0, γ̃v approaches γ̃v0

from

a side on which γ̃v0
always turns with angle π . In this case, let ε > 0 be given. Since there

are only finitely many cone points in any compact region of S̃, for v sufficiently close

to v0, there are no cone points in the convex hull of γ̃v0
[−T(ε), T(ε)] and γ̃v[−T(ε), T(ε)].

Perhaps, making v even closer to v0, this convex hull is a rectangle with width < ε
2 .

Then, by Lemma 2.12, dGS̃(γ̃v, γ̃v0
) < ε, proving continuity at v0.

Finally, we claim that dGS̃(γ̃ , γ̃v) is nondecreasing. Let a < b be in [0, 2]. If

a, b ∈ In, dGS̃(γ̃ , γ̃a) ≤ dGS̃(γ̃ , γ̃b) by Lemma 7.3. Therefore, to prove the distance is

nondecreasing in general, we just need to show dGS̃(γ̃ , γ̃a) ≤ dGS̃(γ̃ , γ̃b) when a and b are

close and a is the lower endpoint of some In or is in the complement of the {In}. In either

case, γ̃a is a singular geodesic that makes angle π at any cone points it encounters on

the side away from γ̃ . For each fixed t, consider the geodesic segment cv,t = [γ̃ (t), γ̃v(t)]

and how it varies with v. We claim the length of cv,a is at most the length of cv,t for

small enough t > a, which together with the formula for dGS̃ will establish the desired

result. As v increases from a, γ̃v(t) will move along a geodesic path perpendicular to γ̃a

on the side of γ̃a away from γ̃ . Indeed, for all b > a small enough that no cone points

are in the convex hull of γ̃a[0, t] and γ̃b[0, t], by construction, γ̃b[0, t] will simply be the

translation of γ̃a[0, t] across an embedded Euclidean rectangle. Take such a b > a. Then,

consider the geodesic triangle with sides ca,t, cb,t, and [γ̃a(t), γ̃b(t)]. Since [γ̃a(t), γ̃b(t)] is

perpendicular to γ̃a on the side away from γ̃ and ca,t hits γ̃a(t) from the side toward γ̃ ,

the angle between ca,t and [γ̃a(t), γ̃b(t)] is at least π
2 . By comparison with a Euclidean

triangle and the CAT(0) property, cb,t is longer than ca,t giving the desired result.

Therefore, γ̃v is in the same connected component of B(Sing, δ) for all v for this

“slide” move.
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We return now to our construction of c̃. For any r ∈ [L, t − L], we can reach gr

via the following series of the moves noted above. First, we move γ̃ → gt/2γ̃ by geodesic

flow. Second, we slide gt/2γ̃ down across R (if R has nonzero height) to a geodesic in the

orbit of γ̃ ′
0 using our “slide” move. We break this move down into a sequence of small

“slide” moves between geodesics γ̃vn
in Sing. Since t > 3L and L ≥ 2T(δ) if we choose vn so

that γ̃vn
∩R and γ̃vn+1

∩R are within δ/2 vertically in R, by Lemma 2.12, dGS̃(γ̃vn
, γ̃vn+1

) < δ.

Therefore, this series of moves stays in the same connected component of B(Sing, δ).

Finally, we apply a series of “pivot” moves and the geodesic flow to get to grc via the

geodesics γ̃ ′
i introduced in our construction above. Our work in the construction showed

that all the “pivot” moves involved are between geodesics within δ of one another.

Therefore, in total, we have a continuous path from γ̃ to grc̃ in B(Sing, δ), completing

the proof of Proposition 7.4. �

The 2nd step in the argument for the pressure gap is to prove the following

Lemma, which uniformly controls how many geodesics in Sing can have image under �t

near to a fixed geodesic. Recall that

dGS,t(γ1, γ2) = max
s∈[0,t]

dGS(gsγ1, gsγ2)

and that a subset of GS is (t, 2ε)-separated if its members are pairwise distance at least

2ε apart with respect to dGS,t.

Lemma 7.5 (Compare with Prop. 8.2 in [4]). For all ε > 0, there exists some C(ε) > 0

such that if Et ⊂ Sing is a (t, 2ε)-separated set for some t > 3L, then for any w ∈ GS,

#{γ ∈ Et | dGS,t(w, �t(γ )) < ε} ≤ C.

Proof. It is sufficient to prove the result in GS̃.

Let d0 be as in Lemma 2.15(a). Fix w ∈ GS̃, and let ε > 0, t > 3L, and Et be given.

Suppose that dGS,t(w, c) < ε. Then, by definition, dGS̃(grw, grc) < ε for all

r ∈ [0, t]. By Lemma 2.11, that dGS̃(w, c) < ε implies dS̃(w(0), c(0)) < 2ε and that

dGS̃(gtw, gtc) < ε implies dS̃(w(t), c(t)) < 2ε.

By Proposition 7.4, any geodesic c in �t(Sing) has c(0) ∈ C̃on and c(t + t′) ∈ C̃on

for some |t′| < 4d0. Using what we noted above, the cone point at c(0) must be within

dS̃-distance 2ε of w(0) and the cone point at c(t+t′) must be within dS̃-distance 2ε+4d0

of w(t).
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15198 B. Call et al.

As S is compact and Con is a discrete subset, for any R > 0, NR = maxp∈S̃ #{C̃on∩
BR(p)} is finite. Let C1(ε) = N2εN2ε+4d0

. As specified in Proposition 7.4, any element c of

�t(Sing) is entirely determined by the cone points c(0) and c(t + t′). Thus, there are at

most C1(ε) elements c ∈ �t(Sing) with dGS̃(w, c) < ε.

Now we want to bound #{γ ∈ Et | �t(γ ) = c} for any c ∈ �t(Sing). For γ ∈ Et,

the construction of �t(γ ) shows that dS̃(γ (0), c(0)) < 2d0 and dS̃(γ (t), c(t + t′)) < 2d0.

Therefore, γ (−T(ε)) ∈ B(c(0), 2d0 + T(ε)) and γ (t + T(ε)) ∈ B(c(t + t′), 2d0 + T(ε)), where

T(ε) is as in Lemma 2.12. Let P be an ε
8-spanning set for B(c(0), 2d0 + T(ε)) with respect

to dS̃ and Q an ε
8-spanning set for B(c(t + t′), 2d0 + T(ε)) with respect to dS̃. By the

compactness of S, there exists some C2(ε) such that #P and #Q are bounded above by

C2(ε). For each (p, q) ∈ P × Q, extend [p, q] to a geodesic ηp,q with ηp,q(−T(ε)) = p.

Since P and Q are ε
8-spanning, there exist (p, q) ∈ P × Q such that

dS̃(γ (−T(ε)), p) < ε
8 and dS̃(γ (t + T(ε)), q) < ε

8 . We immediately have that dS̃(γ (−T(ε)),

ηp,q(−T(ε))) < ε
8 . In addition, γ [−T(ε), t + T(ε)] and [p, q] are geodesic segments whose

endpoints are each less than ε
8 apart. Since geodesic segments in S̃ minimize length,

the length of [p, q] is within ε
4 of t + 2T(ε), the length of γ [−T(ε), t + T(ε)]. Therefore, we

also have

dS̃(γ (t + T(ε)), ηp,q(t + T(ε))) ≤ dS̃(γ (t + T(ε)), q) + dS̃(q, ηp,q(t + T(ε))

<
ε

8
+ ε

4
<

ε

2
.

Using convexity of the distance between geodesics in a CAT(0) space and our

bounds on the distances between the pairs of endpoints, we have

dS̃(γ (r), ηp,q(r)) <
ε

2
for all r ∈ [−T(ε), t + T(ε)].

Then, by Lemma 2.12, dG̃S(grγ , grηp,q) < ε for all r ∈ [0, t], or, equivalently,

dGS̃,t(γ , ηp,q) < ε.

We can conclude that #{γ ∈ Et | �t(γ ) = c} ≤ #{ηp,q} ≤ C2(ε)2. Indeed, if there

are more than Cs(ε)
2 elements in Et that have image c under �t, then some two of them

must both be within dGS̃,t-distance ε of the same ηp,q and hence less than 2ε apart with

respect to dGS̃,t, contradicting the fact that Et is (t, 2ε)-separated.

Putting these estimates together, #{γ ∈ Et | dGS,t(w, �t(γ )) < ε} ≤ C1(ε)C2(ε)2,

completing the proof. �
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The 3rd step of the argument closely follows [4], as we now outline. First, by

Lemmas 4.1 and 4.2 of [10], for any ε > 0 and t > 0,

sup

⎧⎨⎩∑
γ∈E

esupξ∈Bt(γ ,ε)
∫ t

0 φ(grξ)dr
∣∣∣∣ E ⊂ Sing is (t, ε)-separated

⎫⎬⎭ ≥ etP(Sing,2ε,φ). (12)

To apply this fact from [10] here, we just need to recall that Sing is compact (noted in

Definition 2.4).

We now use the fact that φ is locally constant on a neighborhood of Sing. For

sufficiently small ε, the left-hand side of the inequality above is equal to

�(Sing, φ, ε, t) := sup

⎧⎨⎩∑
γ∈E

e
∫ t

0 φ(grγ )dr
∣∣∣∣ E ⊂ Sing is (t, ε)-separated

⎫⎬⎭ . (13)

Combining (12) and (13) and using the fact that gt is entropy-expansive (Lemma 2.17)

exactly as in [4], for sufficiently small ε,

�(Sing, φ, ε, t) ≥ etP(Sing,φ). (14)

Fix 0 < η <
η0
2 where η0 is from Lemma 2.15(b). Note that Reg(η) has non-empty

interior. Pick δ > 0 small enough that �(Sing, φ, 2δ, t) ≥ etP(Sing,φ), φ is locally constant

on B(Sing, δ), and by Lemma 3.10, λ(γ ) < η for all γ ∈ B(Sing, 2δ). Then we proceed

exactly as in [4], invoking Proposition 7.4 as a direct replacement of their Theorem 8.1

and Lemma 7.5 as a direct replacement for their Proposition 8.2. The argument produces

the following lemma.

Lemma 7.6 (Lemma 8.4 in [4]). For sufficiently small δ > 0, there is a (t, 2δ)-separated

set Et in Sing such that there is a (t, δ)-separated set E′′
t ⊂ �t(Et) satisfying

∑
w∈E′′

t

einfu∈Bt(w,δ)
∫ t

0 φ(gsu)ds ≥ βetP(Sing,φ),

where β = 1
C e−6L‖φ‖ and C is as in Lemma 7.5.

Proof. The only minor change needed in substituting our Proposition 7.4 for their

Theorem 8.1 is to note that our condition on t is that it be > 3L, whereas theirs is that
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15200 B. Call et al.

it be > 2L. This gives us β = 1
C e−6L‖φ‖ instead of β = 1

C e−4L‖φ‖. This results in merely

cosmetic changes to the rest of the argument in [4]. �

Note that {(w, t) : w ∈ E′′
t } is in G4d0(η), using the notation of Definition 5.7.

The final step in the argument is to use specification to string together orbit

segments from E′′
t in many different orders so as to produce a large collection of

long orbit segments that together produce more pressure than P(Sing, φ). In [4], this is

undertaken in Section 8.4, and at this point, the argument is almost entirely dynamical.

It uses the estimate of Lemma 7.6 together with strong specification for G4d0(η) as given

by Corollary 5.8. The one geometric piece of information used is that λ(γ ) < η for all

γ ∈ B(Sing, 2δ). Hence, we assumed this when choosing δ above, invoking Lemma 3.10.

This completes the proof of Theorem 7.1.

Applying Theorem 7.1 with φ = 0 gives the following.

Corollary 7.7. htop(gt|Sing) < htop(gt).

With the pressure gap condition for such potentials in hand we briefly note a

second class of potentials for which it holds. Proposition 4.7 of [6] notes that if the

pressure gap P(Sing, φ) < P(φ) holds for φ, then for any function sufficiently close to

φ (specifically with 2‖φ − ψ‖ < P(φ) − P(Sing, φ)) and any constant c, P(Sing, ψ + c) <

P(ψ +c). Applying this to the locally constant functions φ discussed in this section gives

us a further class of potentials with a pressure gap. Applying it with φ = 0 gives us one

class of particular note.

Corollary 7.8. If ψ is a continuous potential with ‖ψ‖ < 1
2

(
htop(gt) − htop(gt|Sing)

)
,

where htop is the topological entropy, then P(Sing, ψ) < P(ψ).

8 Equilibrium States are Limits of Weighted Periodic Orbits

We can show that weighted periodic orbits equidistribute to the equilibrium states

we have constructed, following a method of [4]. Throughout this section, we write

GM := GM(η) (see Definition 5.7) as we will work with a fixed η throughout.

Define the equivalence class of a closed geodesic [γ ] to be all geodesics η ∈ GS

for which γ = gtη for some t ∈ R. Then let PerR[Q−δ, Q] be the set of equivalence classes

of regular closed geodesics with period in [Q− δ, Q]. Now consider such a regular closed

geodesic, and define μγ to be the normalized Lebesgue measure supported on γ and

�(γ ) = ∫ �(γ )

0 φ(guγ ) du. These definitions agree for all representatives of an equivalence
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class, so we define μ[γ ] = μγ and �([γ ]) = �(γ ). We consider the weighted sum

μQ,δ = 1

�R(Q, δ, φ)

∑
[γ ]∈PerR[Q−δ,Q]

e�([γ ])μ[γ ],

where �R(Q, δ, φ)= ∑
[γ ]∈Per[Q−δ,Q]

e�([γ ]) is our normalizing constant. When lim
Q→∞

1
Q log �R(Q,

δ, φ) exists, it can be thought of as the pressure of closed saddle connection paths, and

we write it as PR,δ(φ).

Theorem 8.1. We use the notation above. Let φ be a Hölder potential with P(Sing, φ) <

P(φ), and let μ be the unique equilibrium state for φ. Then, for all δ > 0, PR,δ(φ) = P(φ)

and in the weak-* topology we have lim
Q→∞ μQ,δ = μ.

Remark. Note that this provides a way to identify interesting potentials, by consid-

ering geometrically relevant ways to weight closed geodesics. For instance, one could

potentially try to identify a continuous function that weights γ by the number of conical

points it turns at.

We first prove a lemma that will be necessary throughout this section.

Lemma 8.2. Let 2ε be less than the injectivity radius of S. For all Q � δ > 0, any set

of representatives of the equivalence classes in PerR[Q − δ, Q] is (Q, ε)-separated.

Proof. Consider [γ1], [γ2] ∈ PerR[Q−δ, Q], and let γ1, γ2 be representatives. Furthermore,

suppose dGS(gtγ1, gtγ2) < ε for all t ∈ [0, Q]. By Lemma 2.11, dS(γ1(t), γ2(t)) < 2ε for all

t ∈ [0, Q]. By our choice of ε, these geodesics are freely homotopic and represent the

same element g of the fundamental group. Letting γ̃i be lifts of γi, we have that both γ̃1

and γ̃2 are axes of g. By [3, Theorem II.6.8], γ̃1 and γ̃2 are parallel, and so they bound a

flat strip by the flat strip theorem. This contradicts the assumption that γ1 and γ2 are

regular. �

We have the following proposition, which follows from the proof of variational

principle found in [21, Theorem 9.10] because PerR[Q − δ, Q] is (Q, ε)-separated for all

sufficiently small ε.

Proposition 8.3. If μ is the unique equilibrium state for φ, then for all δ > 0 such that

lim
Q→∞

1
Q log �R(Q, δ, φ) = P(φ), we have lim

Q→∞ μQ,δ = μ.
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In order to apply this proposition, we need to establish a growth rate for

�R(Q, δ, φ) for all sufficiently small δ > 0, which is done in Propositions 8.7 and 8.8

below.

First, we show that the growth rate for �R(Q, δ, φ) is fast enough. In order to do

this, we need to be able to approximate (γ , t) ∈ GM by closed geodesics of a bounded

length. This is encapsulated in the following proposition.

Proposition 8.4. For all δ > 0, there exists T ′ such that for all (γ , t) ∈ GM with

t >
θ0
η

+ 2M, there is some regular closed geodesic ξ with period in [t + T ′ − δ, t + T ′]
such that dGS(guγ , guξ) < δ for all u ∈ [0, t].

Proof. First, we explain how to obtain the statement of the proposition for (γ , t) ∈ G.

Let δ > 0, and let τ̂ be the specification constant for G with shadowing scale δ
8

(see Proposition 5.6). We will show that T ′ = τ̂ + δ
2 satisfies the requirements of the

Proposition. Let (γ , t) ∈ G, and let ξ be a geodesic guaranteed by specification that

shadows (γ , t) twice in succession. Now recall from Proposition 5.6 that there exists a

closed interval I ⊃ [ θ0
2η

, t − θ0
2η

] such that ξ contains two copies of γ (I). In other words,

there exist r1, r2 > 0 such that ξ(ri + r) = γ (r) for all r ∈ I, where i ∈ {1, 2}. Thus, we

can choose ξ to be a closed geodesic and observe that its length is given by r2 − r1.

Now, since dGS(g θ0
2η

ξ , g θ0
2η

γ ) ≤ δ
8 by Proposition 5.6, we can apply Lemma 2.11 to show

dS(ξ(
θ0
2η

), γ (
θ0
2η

)) ≤ δ
4 . Thus, |r1| ≤ δ

4 . Similarly, considering the 2nd copy of (γ , t) that ξ

shadows, we have dS(ξ(
θ0
2η

+t+ τ̂ ), γ (
θ0
2η

)) ≤ δ
4 , and so r2 ∈ [τ̂ +t− δ

4 , τ̂ +t+ δ
4 ]. Hence, ξ is a

regular closed geodesic with length in [τ̂ + t− δ
2 , τ̂ + t+ δ

2 ]. Taking T ′ = τ̂ + δ
2 , we are done.

In order to adapt this argument to GM for τ > 0, note that we achieve specification for

GM by considering the specification constant for G at a smaller scale (which depends on

M). (See Corollary 5.8.) �

To establish the desired growth rates on �R(Q, δ, φ), we need two technical

counting results from [10]. These results are used implicitly in the proof of Theorem 1.1,

and we do not provide a self-contained proof in the interest of concision. However, we

do discuss why they hold in our setting.

As noted in Section 1.1, the conditions that we check differ slightly from those

used in [10]. The only case where they are not immediately stronger conditions is the

pressure estimate. In [10], the authors need to define the pressure of a discretized

collection of orbit segments P([P] ∪ [S], φ) < P(φ). Because we use λ-decompositions,

we do not need to consider the pressure of collections of orbit segments (this is the
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content of [5, Lemma 3.5, Theorem 3.6] and [6, Proposition 4.2]). Instead, it suffices to

show that P
(⋂

t∈R gtλ
−1(0), φ

)
< P(φ), which is precisely the condition P(Sing, φ) < P(φ).

The lemmas we will use are the following.

Lemma 8.5 ([10, Lemma 4.12]). There exist C, ε, M > 0 such that for all t > 0, there

exists a (t, ε)-separated set Et with the following properties:

• ∑
γ∈Et

exp
(∫ t

0 φ(guγ ) du
)

≥ CetP(φ)

• Et ⊂ {γ ∈ GS | (γ , t) ∈ GM}.

Lemma 8.6 ([10, Lemma 4.11]). For all ε > 0 sufficiently small, there exists a constant

D > 0 such that for any (t, ε)-separated set Et, we have

∑
γ∈Et

exp
(∫ t

0
φ(guγ ) du

)
≤ DetP(φ).

We are now ready to prove our growth rates.

Proposition 8.7. For all δ > 0, there exists a constant Ĉ such that

�R(Q, δ, φ) ≥ Ĉ

Q
eQP(φ)

for all sufficiently large Q.

The proof of this proposition follows almost exactly the proof of the lower bound

in [4, Proposition 6.4], replacing the use of [4, Corollary 4.8] with Proposition 8.4. We

include it here for completeness.

Proof. Let C, ε, M, and Et be as in Lemma 8.5. Now, choose ρ < ε
3 small enough that the

Bowen property at scale ρ holds on GM (that this is possible follows immediately from

the fact that G has the Bowen property). Then, by Proposition 8.4, there exists T ′ > 0

so that when t >
θ0
η

+ 2M, there is an injective mapping from Et to a set Pt of regular

closed geodesics with periods in [t + T ′ − δ, t + T ′], that is, for any ξ ∈ Pt, there exists

u ∈ [t + T ′ − δ, t + T ′] such that guξ = ξ . In particular, for all γ ∈ Et, there exists ξ ∈ Pt so

that dGS(guξ , guγ ) ≤ ρ for all u ∈ [0, t]. Because the mapping is injective and φ has the
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Bowen property at scale ρ on GM , it follows from Lemma 8.5 that

∑
ξ∈Pt

exp
(∫ t

0
φ(guξ) du

)
≥ Ce−KetP(φ)

for some constant K independent of t. Now, writing �(ξ) = ∫ �(ξ)

0 φ(guξ) du, we can then

write

∑
ξ∈Pt

exp(�(ξ)) ≥
∑
ξ∈Pt

exp
(∫ t

0
φ(guξ) du − T ′‖φ‖

)
≥ Ce−(K+T ′‖φ‖)etP(φ).

At this point, we can almost relate this to �R(Q, δ, φ). However, there is a possibility

that ξ1, ξ2 ∈ Pt both represent the same closed geodesic path, that is, there exists u so

that guξ1 = ξ2. As Pt is (t, ρ)-separated and dGS(η, guη) = u, there are at most t+T ′
ρ

such

repetitions. Hence, if Q ≥ T, by setting Q = t + T ′, we have

�R(Q, δ, φ) ≥
( ρ

Q

)
Ce−Ke−T ′(‖φ‖+P(φ))eQP(φ).

�

In order to see that the growth rate is not too large, we use Lemmas 8.2 and 8.6.

Proposition 8.8. For all δ > 0, there exists a constant D > 0 such that

�R(Q, δ, φ) ≤ Deδ‖φ‖eQP(φ)

for all sufficiently large Q.

Proof. By Lemma 8.2, any set of representatives of PerR[Q − δ, Q] is (Q, ε)-separated

for ε sufficiently small, and in particular, small enough to apply Lemma 8.6. Now, given

[γ ] ∈ PerR[Q − δ, Q], observe that
∣∣∣�(γ ) − ∫ Q

0 φ(guγ ) du
∣∣∣ ≤ δ‖φ‖ because we know the

period of γ is at least Q − δ. Consequently, it follows that for such an ε, there exists

D > 0 such that

�R(Q, δ, φ) ≤ eδ‖φ‖ ∑
[γ ]∈PerR[Q−δ,Q]

exp
(∫ Q

0
φ(guγ ) du

)
≤ eδ‖φ‖DeQP(φ).

�
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Proof of Theorem 8.1. Propositions 8.7 and 8.8 imply that

lim
Q→∞

1

Q
log �R(Q, δ, φ) = P(φ).

By Proposition 8.3, it follows that lim
Q→∞ μQ,δ = μ. �
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