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1 Introduction

In this project we develop and investigate a differential equations model
for a zombie infestation of Wesleyan’s campus. We came up with several
models which might describe the spread of zombies across campus and we
will describe below how these models were arrived at, and how they make
some intuitive sense. Using some limited data about the infestation, we
used one of the models to predict what will happen in this infestation using
a numerical method, and we report on the results below. Then we discussed
a possible alteration of the model to account for active killing of the zombies
and we used it to figure out how many zombies per hour must be killed if
the outbreak is to be stopped.

2 The models

We were asked to model the following situation. A zombie outbreak begins
at Wesleyan with one zombie at 12am, which increases to 3 by 1am. By
6am there are 20 zombies and the original zombie died at 4am. We are told
that we expect zombies to die between 4 and 24 hours after infection. We
also know that there are 4000 people on campus, and that this number is
fixed, as campus has been sealed off. This data is summarized below:

time (hr) Humans Zombies Dead

0 3999 1 0

1 3997 3 0

2 0

3 0

4 1

5 1

6 3979 20 1

In this table, time refers to hours since midnight. We are not told exact
zombie populations between 2am and 6am.
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To model the outbreak we introduce the following notation: H(t) will
be the number of humans at time t, Z(t) the number of zombies, and D(t)
the number of dead zombies. We know from the description of the situation
that the total number of individuals is always 4000 or

H(t) + Z(t) +D(t) = 4000.

We will assume that the outbreak takes place over a relatively short
period of time, so zombies are the only cause of death that has any real
chance of happening.

Since we do not have full information about the way the populations
evolve, we attempt to build a model by describing the rate of change of
each population in a reasonable way. There are two sources of population
change: humans becoming zombies, and zombies dying. The first happens
more often when there are more zombies and more humans, and we know
that it would drop to nothing if there were either no zombies present, or
no humans left to infect. Without other information we decided to model
this rate of infection by αH(t)Z(t) since it is a relatively simple expression
that matches the three criteria mentioned above. The parameter α will be
estimated below. It is positive and the larger α is, the faster the zombie
population increases.

The rate of zombie death is trickier to estimate. One possibility is to
suppose that all zombies die 14 hours since they were created, since this is
the midpoint of the 4-24 hour lifespan they have. In this case, the rate of
zombie death at time t is the rate of zombie creation 14 hours earlier, at
time t−14, or αH(t−14)Z(t−14). Another possibility is to suppose that a
fixed proportion of the zombies die in any given hour. In this case the rate
of death is βZ(t) where β is a parameter between 0 and 1. For this paper,
we decided to try the first model.

Using these assumptions, we get the following DE model for the human,
zombie, and dead populations:

dH

dt
= − αH(t)Z(t)

dZ

dt
= αH(t)Z(t) − αH(t− 14)Z(t− 14)

dD

dt
= αH(t− 14)Z(t− 14).

One thing to note about this model is that dH
dt + dZ

dt + dD
dt = 0. This

coheres with the fact that the total number of individuals stays constant.
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3 Qualitative Analysis

We can draw a few qualitative conclusions from this model. First, there
are equilibrium solutions when Z(t) is always equal to zero, or when H(t)
and H(t − 14) are both equal to zero. In the first, no outbreak occurs at
all. This makes sense as an equilibrium, although it is not what happens in
our situation. In the second, the outbreak has completely killed off all the
humans for more than 14 hours, and now the last of the zombies have died
off as well – clearly an equilibrium situation.

We can also note briefly that dH
dt is always negative or zero, so the human

population always decreases, and dD
dt is always positive or zero, so the dead

population always increases. Because of the t− 14 factor, the system is not
autonomous, so we could not draw a phase portrait.

4 Numerical solution

Since we don’t know how to write down an exact solution for this model, we
used the following numerical method. Assuming we know the populations
as time t, we can approximate their value at time t+ 1 using the rule:

Pop(t+ 1) = Pop(t) +
dPop

dt
∆t.

This is Euler’s method with a step size of ∆t = 1. For our particular system,
it yields:

H(t+ 1) =H(t) − αH(t)Z(t)

Z(t+ 1) =Z(t) + αH(t)Z(t) − αH(t− 14)Z(t− 14)

D(t+ 1) =D(t) + αH(t− 14)Z(t− 14).

Using the initial data in the table above, we can then find approximate
solutions to this system of DEs using Euler’s method in an iterative way.
Since we need to use times 14 hours in the past, we filled in 0 for D(t) before
midnight, and 1 for Z(t) stretching back to 14 hours before the first zombie
died. We used an Excel spreadsheet to carry out this calculation. A portion
of the calculation is below. Note that in Excel, we formatted the data to
round populations off to the nearest integer, but in reality, the simulation
has fractional values for the population.

To carry out these calculations, we needed a value of the parameter
α. Since not enough detail was given to come up with a sensible value a
priori, we tried several values until the calculations matched the given data
relatively closely. In particular, we looked for a value of α which would
match the 20 zombie population at time t = 6. In the end, we settled on
α = .00015, which gave Z(6)

.
= 17. A graph of the human, zombie, and

dead populations for the first 40 hours is below.
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Figure 1: A portion of our numerical calculation
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Figure 2: Results of our numerical simulation
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5 A model with zombie-killing

Since we see from the graphs that this zombie outbreak will eventually kill us
all, we investigated what could be done about this situation. One possibility
is that, starting at 6am when we become aware of the outbreak, we send
out a group of people to kill zombies. Let’s assume that they kill γ zombies
an hour. From that point on, we have a new set of differential equations:

dH

dt
= − αH(t)Z(t)

dZ

dt
= αH(t)Z(t) − αH(t− 14)Z(t− 14) − γ

dD

dt
= αH(t− 14)Z(t− 14) + γ.

We are assuming here that hunting the zombies does not increase the danger
of infection, i.e. does not increase α, and that no zombie hunters die directly
from their efforts, rather than via infection. This model is also not perfect
because the −αH(t−14)Z(t−14) factor for zombie death won’t be accurate
any more, since some of those zombies will have been killed already. If the
zombie population is fairly large compared with γ, however, this is only a
slight error.

We ran this new model through the same calculations, starting the killing
at 10 hours, when there were about 100 zombies. The results with killing
rates of 50 and 57 per hour are shown below.

6 Results

For our original model, we found that the zombies eventually wipe out all the
humans. At the 29 hour mark, all humans are gone and by 40 hours, all the
zombies have died off so that all individuals are dead. The curves graphed
above show an outbreak that begins slowly, then very quickly infects all the
humans, with almost all of the infections coming between 15 and 21 hours.
This indicates that the outbreak could get out of control very quickly. By
the time deaths start happening at any significant rate, the humans are
mostly gone, so the last 16 hours or so of the simulation mainly consist of
zombies dying off. The zombie population is roughly symmetric about its
maximum at around 23 hours, although it does seem to die off a little bit
slower than in spreads.

For the models with zombie killing, we found that it took a fairly large
killing rate to make any difference. A killing rate of 50 per hour, roughly
half of the active zombies when the zombie hunting started, clearly changes
the results and decreases the speed of the outbreak and the total number of
zombies at any time, but the human population still dies out. At 57 zombies
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Figure 3: Results with killing rate of 50/hr
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Figure 4: Results with killing rate of 57/hr
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per hour, however, the outbreak is quickly contained, ending by 33 hours,
with a loss of less than half of the human population.

7 Analysis

There are several possible sources of error in our original model. Some are in
the original model itself. We supposed that all zombies die exactly 14 hours
after infection, but the description we were given we just know that they die
between 4 and 24 hours from infection. If the zombies might have different
lifespans, we might have to modify the model. We also picked the simplest
model that fit the data. With more information we might be able to try
more detailed models with more parameters. For instance, we could suppose
that the rate of zombie creation is αH(t)p1Z(t)p2 for some p1, p2 > 0. This
generalizes the model above where p1 and p2 were both 1. These parameters
might enable us to fit more detailed data more precisely, and they would
still fit the qualitative criteria for the model that we noted above.

The model with zombie killing seems to have larger problems. As noted
above, it really only makes sense if the killing rate is not too large com-
pared with the population. But we found that it took a fairly large killing
rate (about half the population) before the zombie hunting made much of
a change in the predictions, calling them into question somewhat. It’s also
worth noting that these models stop making sense once the number of zom-
bies drops below the killing rate. We can see this in the solution graphs,
where the number of dead exceeds 4000. This comes from the flaw of having
50 or so zombies ‘killed’ when fewer than 50 are actually still there. This
killing model could be improved by adjusting the natural death rate to ac-
count for zombies already killed, and by making sure the killing rate drops
when the number of zombies to kill is too small.

Another source of error is Euler’s method itself. A step size of 1 is
rather large. The model should certainly be run with smaller step sizes to
get increased accuracy.

The model has several strengths, also. It fits our qualitative idea of what
an outbreak would look like quite well, and it is possible to draw from it
a sense of how quickly an outbreak could spread. It is also quite easy to
work with and relatively simple, although it produces solutions which do
not appear to be well-known functions. It is also fairly easy to adapt by
adding new parameters.

In addition, it should be applicable to many other situations. For in-
stance, zombies could be replaced by any other sort of infection. Another
possible application would be to the spread of a rumor which, a certain time
after hearing it, the hearer learns is not true.
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