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Consider a compact surface of genus ≥ 2 equipped with a metric that is flat everywhere except at finitely many cone

points with angles greater than 2π. Following the technique in the work of Burns, Climenhaga, Fisher, and Thompson,

we prove that sufficiently regular potential functions have unique equilibrium states if the singular set does not support

the full pressure. Moreover, we show that the pressure gap holds for any potential which is locally constant on a

neighborhood of the singular set. Finally, we establish that the corresponding equilibrium states have the K-property,

and closed regular geodesics equidistribute.

1 Introduction

We examine the uniqueness of equilibrium states for geodesic flows on a specific class of CAT(0) surfaces, those

where the negative curvature is concentrated at a finite set of points. Translation surfaces are examples of such

surfaces. A translation surface X is a pair (X,ω) where X is a Riemann surface of genus g, and ω is a holomorphic

one-form on X. The zeroes of this holomorphic one-form occur at a finite set of points. The one-form ω defines a

metric which is flat everywhere except at its zeroes. At the zeroes the metric has a conical singularity with angle

2(n+ 1)π, where n is the order of the zero. For a more in-depth overview of translation surfaces see [22, 23].

In [4], the authors prove that under certain conditions, a unique equilibrium state exists for potentials

associated to the geodesic flow on a closed, rank-one manifold with nonpositive sectional curvature (an example

of a CAT(0) space without singularities). The conditions are a Hölder continuous potential and a pressure gap,
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that is, topological pressure of the flow restricted to the singular set is strictly less than pressure of the flow

overall. The singular set they consider is all the vectors in the unit tangent bundle with rank larger than one.

When the singular set is empty – for example in strictly negative curvature – every Hölder potential has

a unique equilibrium state. When the singular set is non-empty, an additional condition is necessary as the

geodesic flow is nonuniformly hyperbolic. Restricting the pressure of the flow on the singular set is a way of

describing the flow of the singular set as having a small enough impact on the system as a whole that uniqueness

is still guaranteed.

The natural way to define a geodesic flow on CAT(0) surfaces is to look at the flow on the set of all geodesics

(see Section 2.1). Denote by GS the set of all geodesics on the surface S (see (1)).

In this paper, we study the uniqueness of equilibrium states for the geodesic flow described above (see

Definition 2.5), as we are guaranteed existence for continuous potentials by entropy-expansivity of the flow (see

Lemma 2.17). In particular, we use the technique of [4] in our setting and define the singular set to be the set

of geodesics which never encounter any cone points or, when they do, turn by angle exactly ±π.

Remark. Some other settings where the uniqueness of equilibrium states was studied are described in more

detail below in the outline of the argument.

We prove the following:

Theorem A. Let gt be the geodesic flow on S, a compact, connected surface of genus ≥ 2 equipped with a

metric that is flat everywhere except at finitely many cone points which have angle greater than 2π. Let Sing be

the singular set as defined in Definition 2.4. Consider φ : GS → R a Hölder continuous potential. If the pressure

of the singular set is strictly less than the full topological pressure, i.e., P (Sing, φ) < P (φ) (see Definitions 2.5

and 2.6), then φ has a unique equilibrium state µ that has the K-property (see Definition 2.2).

It is natural to ask for which potentials we have the pressure gap (i.e., the condition P (Sing, φ) < P (φ)) in

Theorem A. The following theorem establishes the pressure gap for a large class of Hölder continuous potentials,

and thus uniqueness of equilibrium states.

Theorem B (Theorem 7.1 and Corollary 7.8). Let S, GS, and gt be as in Theorem A. Let φ : GS → R be

a Hölder continuous function which is locally constant on a neighborhood of Sing, or which is sufficiently

close to a constant in the uniform norm (see Corollary 7.8 for a precise statement of ‘sufficiently close’). Then

P (Sing, φ) < P (φ).

As a nice corollary (Corollary 7.7 below) we have htop(gt|Sing) < htop(gt) for our flows.

We slightly improve the case φ = 0 from Ricks’s result [20, Theorem B] by showing that the unique measure

of maximal entropy for the geodesic flow on S has the K-property which is stronger than mixing. Using the

Patterson-Sullivan construction, Ricks builds a measure of maximal entropy µ [19] and shows it is unique by

asymptotic geometry arguments [20]. We note that Ricks’s result holds for any compact, geodesically complete,

locally CAT(0) space such that the universal cover admits a rank-one axis.
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A natural question is whether the techniques in this paper can be extended to the more general CAT(0),

rank-one setting in which Ricks works. The present paper can be viewed as a first step in that direction,

but working in the general CAT(0) setting presents real difficulties right from the outset of the argument. In

particular, without the Riemannian structure present in [4] or the flat surface structure we exploit, it is not clear

to us what the right candidate for the singular set for would be, or how to find a function like λ (see Section 3)

to aid in producing an orbit decomposition.

We call a geodesic that is not in Sing regular. Using strong specification for a certain collection of ‘good’

orbit segments, we show that weighted regular closed geodesics equidistribute to these equilibrium states (see

Section 8 for details).

Theorem C (Theorem 8.1). Let φ be as in Theorem B and µφ is the corresponding equilibrium state. Then,

µφ is the weak* limit of weighted regular closed geodesics.

1.1 Outline of the argument

A general scheme for proving that unique equilibrium states exist was developed by Climenhaga and Thompson

in [10], building on ideas of Bowen in [2] which were extended to flows in [17]. To prove that there are unique

equilibrium states for a flow {ft} and a potential φ on a compact metric space X, Climenhaga and Thompson

ask for the following (see [10, Theorems A & C]):

• The pressure of obstructions to expansivity, P⊥exp(φ) (see Definition 2.7), is smaller than P (φ), and

• There are three collections of orbit segments P,G,S, that we call collections of prefixes, good orbit

segments, and suffixes, respectively, such that each orbit segment can be decomposed into a prefix, a

good part, and a suffix (see [4, Definition 2.3]), satisfying

(I) G has the weak specification property at any scale (Definition 2.8),

(II) φ has the Bowen property on G (Definition 2.9), and

(III) P ([P] ∪ [S], φ) < P (φ).

This scheme was implemented for the geodesic flow on a closed rank-one manifold with nonpositive sectional

curvature in [4] and, more generally, without focal points in [8, 7]. Also, it was used to obtain the uniqueness

of the measure of maximal entropy on certain manifolds without conjugate points in [9] and on CAT(-1) spaces

in [13].

Our proof follows a specific approach to satisfying the conditions in the above scheme which was applied

in [4], and which allows us to reduce condition (III) to checking the pressure of an invariant subset of GS.

Although the decomposition (P,G,S) is in general very abstract, we choose the decomposition using a function

λ on the space of geodesics. This choice of decomposition also allows us to avoid having to deal with the sets

[P] and [S], which are discretized versions of P and S necessary for technical counting arguments to be applied

to some decompositions. We define the function λ, prove that it is lower semicontinuous, and describe how it
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gives rise to a decomposition in Section 3. For such a ‘λ-decomposition’, P = S and, roughly speaking, orbit

segments in P and S have small average values of λ wheareas any initial or terminal segment of an element of

G has average value of λ which is not small. Furthermore, by utilizing a λ-decomposition, we are able to appeal

to the following result:

Theorem 1.1 ([6], Theorem 4.6). Let F be a continuous flow on a compact metric spaceX, and let φ : X → R be

continuous. Suppose the flow is asymptotically entropy-expansive, that P⊥exp(φ) < P (φ), and that λ : X → [0,∞)

is lower semicontinuous and bounded. If the λ-decomposition (P,G,S) satisfies the following:

• G(η) has strong specification at all scales, for all η > 0,

• φ has the Bowen property on G(η),

• P (
⋂
t∈R(ft × ft)λ̃−1(0),Φ) < 2P (φ),

where Φ(x, y) = φ(x) + φ(y) and λ̃(x, y) = λ(x)λ(y), then (X,F , φ) has a unique equilibrium state which has

the K-property.

Theorem A will follow from Theorem 1.1 after we show that we can satisfy all conditions required. See

Section 1.2 for the sections where each property is checked.

Our choice of λ gives a connection between orbit segments in P and S and the singular set Sing (see

Definition 2.4). The singular set is also the source of the obstructions to expansivity (see Lemma 2.16). These

connections are useful for proving the two ‘pressure gap’ properties Theorem 1.1 calls for: P⊥exp(φ) < P (φ) and

P (
⋂
t∈R(ft × ft)λ̃−1(0),Φ) < 2P (φ). In particular, in our case

⋂
t∈R ftλ

−1(0) = Sing.

Remark. The strong specification property on G in Theorem 1.1 is used to obtain that the equilibrium state

has the K-property. The weak specification property on G is enough to guarantee the existence of a unique

equilibrium state.

Remark. The K-property implies strong mixing of all orders.

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we provide definitions of and background on the main objects

and tools of this paper and we record some basic geometric results which will be used throughout the paper.

The main steps for the proof of Theorem A according to Theorem 1.1 are in Sections 3 (the λ-decomposition),

4 and 5 (the specification property for G), and 6 (the Bowen property for G).

We obtain Theorem B in Section 7, first proving the pressure gap condition for potentials which are locally

constant on a neighborhood of Sing, and then using this result to note that the same gap holds for potentials

with sufficiently small total variation. Theorem C (the equidistribution result) is proved in Section 8.
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Fig. 1. A large-angle cone point, embedded in R3. Away from the cone point, the surface is flat under the
intrinsic metric – it is the union of lines in R3 and so has Gaussian curvature zero. The dark lines show a geodesic
segment hitting the cone point and its two continuations with turning angles ±π; these geodesics are in Sing.
All continuations of the geodesic with line segments passing through the dark shaded region are geodesics. The
spread of the geodesic continuations in this region is exactly the source of ‘hyperbolicity’ for the geodesic flow
in these spaces.

2 Background

2.1 Setting and Definitions

Throughout, S denotes a compact, connected surface of genus ≥ 2 equipped with a metric which is flat

everywhere except at finitely many conical points which have angles larger than 2π (See Figure 1). We assume

S is oriented by passing to the oriented double cover if necessary. Con denotes the set of conical points on S and

denote by L(p) the total angle at a point p ∈ S. In particular, L(p) = 2π if p /∈ Con and L(p) > 2π if p ∈ Con.

Note that in the special case of a translation surface, L(p) is always an integer multiple of 2π, but we make no

such restriction here. Denote by S̃ the universal cover of S, and note that S̃ is a complete CAT(0) space (see,

e.g. [3] for definitions and basic results on CAT(0) spaces). Throughout, tildes denote the obvious lifts to the

universal cover.

Since S̃ is CAT(0), any p̃, q̃ are connected by a unique geodesic segment. Throughout, we will denote this

segment by [p̃, q̃].

Let GS be the set of all (parametrized) geodesics in S. That is,

GS = {γ : R→ S | γ is a local isometry}. (1)

We endow GS with the following metric:

dGS(γ1, γ2) = inf
γ̃1,γ̃2

∫ ∞
−∞

dS̃(γ̃1(t), γ̃2(t))e−2|t| dt, (2)
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where the infimum is taken over all lifts γ̃i of γi to GS̃ for i = 1, 2. GS serves as an analogue of the unit tangent

bundle in our setting. (Indeed, for a Riemannian surface, GS is homeomorphic to T 1S.) It is necessary to examine

this more complicated space as geodesics in S are not determined by a tangent vector – they may branch apart

from each other at points in Con. In this setting, the metric dGS records the idea that two geodesics in GS are

close if their images in S are nearby for all t in some large interval [−T, T ].

Geodesic flow on GS comes from shifting the parametrization of a geodesic:

(gtγ)(s) = γ(s+ t).

The normalizing factor 2 in our definition of dGS ensures that gt is a unit-speed flow with respect to dGS .

(Showing this is a completely straight-forward computation, using the fact that dS̃(γ̃(t), γ̃(s+ t)) = s).

We recall two definitions of the K-property of an invariant measure. See Section 10.8 in [15] for a proof of

the equivalence of these definitions (known as completely positive entropy and K-mixing, respectively) with the

original definition of the K-property, as well as more details about other equivalent definitions.

Definition 2.1. A flow-invariant measure µ has the K-property if (X, (gt), µ) has no non-trivial zero entropy

factors (i.e., the Pinsker factor is trivial).

This definition can be reformulated as a statement about mixing in the following manner.

Definition 2.2. A flow-invariant measure µ has the K-property if for all t 6= 0, for all k ≥ 1, and all measurable

sets A0, A1, . . . , Ak we have

lim
n→∞

sup
B∈Cn(A1,...,Ak)

|µ(A0 ∩B)− µ(A0)µ(B)| = 0,

where Cn(A1, . . . , Ak) is the minimal σ-algebra generated by gtr(Aj) for 1 ≤ j ≤ k and natural r ≥ n.

Remark. The K-property implies strong mixing of all orders. We recall that an invariant measure µ is strongly

mixing of all orders if for all k ≥ 1 and all measurable sets A0, A1, . . . , Ak we have

lim
t1→∞, tj+1−tj→∞

µ(A0 ∩ gt1(A1) ∩ . . . ∩ gtk(Ak)) =

k∏
j=0

µ(Aj).

A key tool in our analysis of the geodesic flow on S will be the turning angle of a geodesic at a cone point.

We note that although S is not smooth at p ∈ Con, there is a well-defined space of directions at p, SpS, and a

well-defined notion of angle (see, e.g. [3, Ch. II.3]). In the angular metric, SpS is a circle of total circumference

L(p).
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Definition 2.3. Let γ ∈ GS. The turning angle of γ at time t is θ(γ, t) ∈ (− 1
2L(γ(t)), 1

2L(γ(t))] and is the

signed angle between the segments [γ(t− δ), γ(t)] and [γ(t), γ(t+ δ)] (for sufficiently small δ > 0). A positive

(resp. negative) sign for θ corresponds to a counterclockwise (resp. clockwise) rotation with respect to the

orientation of [γ(t− δ), γ(t)].

Since γ is a geodesic, |θ(γ, t)| − π ≥ 0 for any t ∈ R. If γ(t) 6∈ Con, then θ(γ, t) = π.

Definition 2.4. We define the singular geodesics in S as

Sing = {γ ∈ GS : |θ(γ̃, t)| = π ∀t ∈ R}.

Since Sing is defined in terms of properties of full geodesics, it is gt-invariant. Geodesics not in Sing turn by

some angle 6= π at a cone point. This is an open condition, so Sing is closed and hence compact.

The geodesics in Sing either never encounter any cone points or, when they do, turn by angle exactly ±π.

They serve as an analogue of the singular set in the Riemannian setting of [4], i.e., geodesics which remain entirely

in zero-curvature regions of the surface. In both cases the idea is that a singular geodesic never takes advantage

of the geometric features of the surface (either its negative curvature regions or its large-angle cone points)

to produce hyperbolic dynamical behavior. We note here a potentially confusing aspect of this terminology: a

singular geodesic in this paper avoids the ‘singular,’ i.e. non-smooth, points of Con, or treats them as if they

are not ‘singular.’

We introduce some classical notions of thermodynamical formalism.

Definition 2.5. Consider a function φ : GS → R that we refer as a potential function. The pressure for φ is

P (φ) = sup
µ

(
hµ(gt) +

∫
GS

φdµ

)
,

where µ varies over all invariant Borel probability measures for gt and hµ(gt) is the measure-theoretic entropy

with respect to the geodesic flow.

An invariant Borel probability measure µφ (if it exists) such that

P (φ) = hµφ(gt) +

∫
GS

φdµφ

is an equilibrium state for φ.

Definition 2.6. P (Sing, φ) is the pressure of the potential φ|Sing on the compact and flow-invariant set Sing

(see Definition 2.4).

Below, we discuss some of the necessary definitions to apply the Climenhaga-Thompson machinery.
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Definition 2.7. Let ε > 0. The non-expansive set at scale ε for the flow gt is

NE(ε) = {γ ∈ GS | Γε(γ) 6⊂ g[−s,s]γ for all s > 0},

where

Γε(γ) = {ξ ∈ GS | dGS(gtγ, gtξ) ≤ ε ∀t ∈ R}.

The pressure of obstructions to expansivity for a potential φ is

P⊥exp(φ) = lim
ε↓0

sup

{
hµ(g1) +

∫
GS

φdµ
∣∣ µ(NE(ε)) = 1

}
,

where the supremum is taken over all gt-invariant ergodic probability measures µ on GS such that µ(NE(ε)) =

1.

In other words, a geodesic is in the complement of NE(ε) if the only geodesics which stay ε close to it for

all time are contained in its own orbit. A flow is expansive if NE(ε) is empty for all sufficiently small ε. The

presence of flat strips in our setting means our flow will not be expansive, but for small ε, the complement of

NE(ε) will turn out to be a sufficiently rich set to use in our arguments.

In the interest of concision, we omit the formal definition of an orbit decomposition, referring instead to

[10]. We will use a specific type of decomposition which has been studied in [5, 6], and we will primarily use

results from those two papers. We note however that results from [10] hold for our decompositions as well, as it is

written for a more general class of decomposition. We discuss this more in Section 8, where we will need to appeal

to a few results directly from [10]. Identify a pair (γ, t) ∈ GS × [0,∞) with the orbit segment {gsγ | s ∈ [0, t]}.

An orbit decomposition is a method of decomposing any orbit segment into three subsegments, a prefix, a

central good segment, and a suffix. We denote the collections of these segments by P,G, and S respectively. The

λ-decompositions that we use in this paper are orbit decompositions which decompose orbit segments based on

a lower semicontinuous function λ. Our choices for the function λ and the associated parameter η > 0 will be

discussed in detail in Section 3, but the idea is this. The function λ measures the amount of ‘hyperbolic’ behavior

seen by the geodesic; in accord with our intuition that cone points are the source of this behavior, λ will be

based on turning angles at these points. A segment is ‘good’ for our purposes (i.e., in G(η)) if it experiences a

lot of hyperbolicity; otherwise, it is in P = S:

• G = G(η) consists of all (γ, t) such that the average value of λ over every initial and terminal segment of

(γ, t) is at least η, and

• P = S = B(η) consists of all (γ, t) over which the average value of λ is less than η.

We can define both specification and the Bowen property for an arbitrary collection of orbit segments

G ⊂ GS × [0,∞). In both cases, by taking G = GS × [0,∞), one retrieves the definitions for the full dynamical

system.



Unique equilibrium states for flat surfaces with singularities 9

Definition 2.8. We say that G has weak specification if for all ε > 0, there exists τ > 0 such that for any finite

collection {(xi, ti)}ni=1 ⊂ G, there exists y ∈ GS that ε-shadows the collection with transition times {τi}ni=1 at

most τ between orbit segments. In other words, for 1 ≤ i ≤ n, there exists τi ∈ [0, τ ] and y ∈ GS such that

dGS(gt+siy, gtxi) ≤ ε for 0 ≤ t ≤ ti

where sk =
∑k−1

j=1 tj + τj . We will refer to such τ as a specification constant.

We say that G has strong specification when we can always take each τj = τ in the above definition.

Definition 2.9. Given a potential φ : GS → R, we say that φ has the Bowen property on G if there is some

ε > 0 for which there exists a constant K > 0 such that

sup

{∣∣∣∣∫ t

0

φ(grx)− φ(gry) dr

∣∣∣∣ ∣∣ (x, t) ∈ G and dGS(gry, grx) ≤ ε for 0 ≤ r ≤ t
}
≤ K.

Remark. If φ has the Bowen property on a collection of orbit segments G at some scale ε > 0, it in turn has

the Bowen property on G at all smaller scales ε′ < ε.

There is also a definition of topological pressure for collections of orbit segments. However, by using

Theorem 1.1, we sidestep this complication.

Finally, we adapt a piece of terminology from flat surfaces to our somewhat more general setting.

Definition 2.10. A geodesic segment with both endpoints in Con and no cone points in its interior is called

a saddle connection. A saddle connection path is composed of saddle connections joined so that the turning

angle at each cone point is at least π. Note that with this definition all saddle connection paths are geodesic

segments.

2.2 Basic geometric results

In this section we collect a few basic results on the geometry of S, S̃, GS, and GS̃ which will be used in our

subsequent arguments.

The following two lemmas relate the metric dGS to the metric dS on the surface itself, and will be useful

for a number of our calculations below. First, we note that if two geodesics are close in GS, then they are close

in S at time zero.

Lemma 2.11 ([13], Lemma 2.8). For all γ1, γ2 ∈ GS,

dS(γ1(0), γ2(0)) ≤ 2dGS(γ1, γ2).
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Furthermore, for s, t ∈ R, dS(γ1(s), γ2(t)) ≤ 2dGS(gsγ1, gtγ2).

Conversely, if two geodesics are close in S for a significant interval of time surrounding zero, then they are

close in GS:

Lemma 2.12 ([13], Lemma 2.11). Let ε be given and a < b arbitrary. There exists T = T (ε) > 0 such that if

dS(γ1(t), γ2(t)) < ε/2 for all t ∈ [a− T, b+ T ], then dGS(gtγ1, gtγ2) < ε for all t ∈ [a, b]. For small ε, we can take

T (ε) = − log(ε).

A similar, and more specialized result which we will need later in the paper (see the proof of Proposition 6.2)

is the following

Lemma 2.13. Suppose that dS(γ1(t), γ2(t)) = 0 for all t ∈ [a, b]. Then, for all t ∈ [a, b], dGS(gtγ1, gtγ2) ≤

e−2 min{|t−a|,|t−b|}.

Proof . For any x ≥ 0,
∫∞
x

(s− x)e−2sds = 1
4e
−2x. In the setting of the Lemma, since the distance between the

geodesics is zero on [a, b] and since geodesics move at unit speed,

dGS(gtγ1, gtγ2) ≤
∫ a

−∞
2(a− s)e−2|t−s|ds+

∫ ∞
b

2(s− b)e−2|t−s|ds.

Quick changes of variables show that this is equal to
∫∞
|t−a| 2(s− |t− a|)e−2sds+

∫∞
|t−b| 2(s− |t− b|)e−2sds =

1
2 (e−2|t−a| + e−2|t−b|), and the Lemma follows.

The geodesic flow has the following Lipschitz property:

Lemma 2.14 ([14], Lemma 2.5). Fix a T > 0. Then, for any t ∈ [0, T ], and any pair of geodesics γ, ξ ∈ GS,

dGS(gtγ, gtξ) < e2T dGS(γ, ξ).

We need the following four geometric facts.

Lemma 2.15. (a) There exists some d0 > 0 such that S̃ contains no flat d0 × d0 square.

(b) There exists some η0 > 0 such that the excess angle at every cone point in S is at least η0.

(c) There exists some `0 > 0 such that the length of every saddle connection is at least `0.

(d) There exists some θ0 > 0 such that the excess angle at every cone point in S is at most θ0.

Proof . These follow immediately from the compactness of S and the fact that S having genus at least two

implies Con 6= ∅.

We note here that Sing is the source of the non-expansivity for our geodesic flow:
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Lemma 2.16. For all ε > 0 less than half the injectivity radius of S, NE(ε) ⊂ Sing.

Proof . Suppose γ ∈ NE(ε) and that ε is smaller than half the injectivity radius of S. Then, there exists ξ ∈ GS

which is not in the orbit of γ such that dGS(gtγ, gtξ) ≤ ε for all t ∈ R. By Lemma 2.11, dS(γ(t), ξ(t)) ≤ 2ε for

all t ∈ R. In particular, using our assumption on ε, there exist lifts γ̃ and ξ̃ such that dS̃(γ̃(t), ξ̃(t)) ≤ 2ε for

all t ∈ R. By the Flat Strip Theorem ([1, Corollary 5.8 (ii)]), there is an isometric embedding R× [a, b]→ S̃

sending R× {a} to the image of γ̃ and R× {b} to the image of ξ̃.

Since ξ̃ is not in the orbit of γ̃, we must have a 6= b and the isometrically embedded strip is non-degenerate.

But this immediately implies that for all t, |θ(γ̃, t)| = π as γ̃ always turns at angle π on the side to which the

embedded flat strip lies. Therefore, γ ∈ Sing.

Recall that a flow is called entropy-expansive if for sufficiently small ε, sup{htop(gt|Γε(γ)) | γ ∈ GS} = 0.

Lemma 2.17 ([20], Lemma 20). The geodesic flow in our setting is entropy-expansive.

Proof . This is proven by Ricks in [20] for geodesic flow on a CAT(0) space. This covers our setting, but Ricks

uses a slightly different definition of the metric on GS than we do, so we outline the argument here.

Fix ε less than half the injectivity radius of S. Lift γ to γ̃ ∈ GS̃. Any geodesics ξ ∈ Γε(γ) lift to ξ̃ ∈ Γε(γ̃).

They are either of the form gtγ̃ for |t| < ε, or are parallel to γ̃ in a flat strip containing γ̃. The flow on Γε(γ̃) is

thus isometric, and so htop(gt|Γε(γ)) = 0.

Lemma 2.18. Given any closed geodesic γ ⊂ S, there is a closed saddle connection path which is homotopic

to γ and has the same length as γ.

Proof . Assume γ contains a point p ∈ Con. Then the desired closed saddle connection path is the geodesic

that starts at p and traces γ.

Suppose γ ⊂ S \ Con, and so γ̃ ⊂ S̃ \ C̃on. Fix an orientation of γ̃ and consider the variation γ̃r of curves

given by sliding γ̃ to its left (so the variational field is perpendicular to γ̃ and to its left with respect to γ̃’s

orientation). Since γ̃ ⊂ S̃ \ C̃on and γ is closed, there is a nonzero lower bound on the distance from γ̃ to C̃on.

Therefore, for all sufficiently small r, γ̃r is defined. The projections to S, γr and γ, form the boundary of a flat

cylinder in S. Thus, γr is a geodesic with length equal to that of γ.

Let r∗ be the supremum of all r > 0 for which γ̃ρ is defined for all ρ ∈ [0, r]. Note that if no supremum

exists, γ̃ bounds a flat half-space in S̃, which contains a fundamental domain for S since S is compact. This

would imply S is flat (with no cone points), a contradiction. Therefore letting r → r∗ from below, γ̃r limits

uniformly on a path, and therefore necessarily a geodesic, containing at least one point in C̃on with the same

length as γ̃. The image of this curve in S (with appropriate parametrization) is the saddle connection path we

want.

In the proof of Lemma 2.20 and in some later proofs we will use the following construction.
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Definition 2.19. Let γ̃ be a geodesic segment in S̃ with endpoint p. The cone around γ̃ with vertex p and

angle ψ is the set of all points q in S̃ such that the unique geodesic segment joining p and q makes angle ≤ ψ

with γ̃ at p. (In Section 3, Figure 2 shows such cones in the context of the proof of Lemma 3.8.)

Lemma 2.20. For any ζ ∈ Con there exists a closed geodesic α passing through ζ with turning angle greater

than π at ζ.

Proof . Let ζ be a cone point with L(ζ) = 2π + β for β > 0. Lift ζ to ζ̃ in S̃ and let c̃ be a geodesic with c̃(0) = ζ̃

and turning angle θ(c̃, 0) = π + β
2 . Let C1 be the cone around c̃(−∞, 0) with vertex ζ̃ = c̃(0) and angle β

8 ; let

C2 be the cone around c̃(0,∞) with vertex ζ̃ = c̃(0) and angle β
8 . By construction, any geodesic connecting a

point in C1 \ {ζ̃} to a point in C2 \ {ζ̃} must pass through ζ̃ with turning angle ≥ π + β
4 .

Let F be a fundamental domain contained in C1. Let g ∈ π1(S) be such that gF ⊂ C2. (F and g exist as

both C1 and C2 contain arbitrarily large balls and S is compact.) Let α be the closed geodesic representative of

g in S. (It will become clear in a moment why α is unique up to parametrization.) Lift α to α̃ with α̃(0) ∈ F .

Then α̃(`(α)) ∈ gF . As noted above, this forces α̃ to pass through ζ̃ and turn with angle > π. Therefore, α is

the desired geodesic (and it is unique up to parametrization since it cannot belong to a flat cylinder).

3 The λ-decomposition

We now turn to the main arguments of the paper. First, following the ideas in [4], we establish the decomposition

(P,G,S) as a ‘λ-decomposition’ using the function λ in Definition 3.3 which is defined through two auxiliary

functions that view the stable and unstable parts of any given geodesic. Throughout this section, fix s > 0

such that 2s is less than the shortest saddle connection of S. Below we omit in the notation the dependence of

functions on s.

Definition 3.1. We define λuu : GS → [0,∞) by

λuu(γ) =
|θ(γ, c)| − π
max{s, c}

,

where c ≥ 0 is the first time that γ(c) hits a cone point and turns with angle strictly greater than π (naturally,

we set λuu(γ) = 0 in case c =∞).

Definition 3.2. We define λss : GS → [0,∞) by

λss(γ) =
|θ(γ, c)| − π
max{s, |c|}

,

where c ≤ 0 is the most recent time that γ(c) has hit a cone point and turned with angle strictly greater than

π (naturally, we set λss(γ) = 0 in case c = −∞).
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We now define our function λ so that near cone points at which geodesics turn with angle greater than π, it

measures the turning angle at that cone point (multiplied by a constant), and far from a cone point, it measures

both distance and turning angle from both the previous and next cone point.

Definition 3.3. Let λuu and λss be functions defined in Definitions 3.1 and 3.2, respectively. We define

λ : GS → [0,∞) by

λ(γ) =


λss(γ) if there exists c ∈ (−s, 0] such that |θ(γ, c)| − π > 0,

λuu(γ) if there exists c ∈ [0, s) such that |θ(γ, c)| − π > 0,

min{λss(γ), λuu(γ)} otherwise.

Observe that it is well-defined when γ(0) is a cone point, as in that case, λuu(γ) = λss(γ).

We prove several properties of λ.

Proposition 3.4. If λ(γ) = 0, then λ(gtγ) = 0 either for all t ≥ 0 or for all t ≤ 0.

Proof . If λ(γ) = 0, then γ does not turn at a cone point in the interval (−s, s), and so, λuu(γ) = 0 or

λss(γ) = 0. In the first case, this implies that γ never turns at a cone point in the future. Therefore, for all

t ≥ 0, λ(gtγ) = λuu(gtγ) = 0. A similar argument holds with t ≤ 0 if λss(γ) = 0.

As corollaries, we have:

Corollary 3.5.
⋂
t∈R gtλ

−1(0) = Sing.

Corollary 3.6. If λ(γ) = 0, then d(gtγ,Sing)→ 0 either as t→∞ or as t→ −∞.

Proof . Without loss of generality, assume λ(gtγ) = 0 for all t ≥ 0. Then, γ does not turn at a cone point in

[0,∞), and we can define r := max{t : |θ(γ, t)| > π} to be the most recent cone point in the past at which γ

turns. Define a singular geodesic γSing as γSing(t) = γ(t) for all t > r, and for all cone points t ≤ r, γSing turns

with angle π. Then, gtγ and gtγSing agree on increasingly long intervals, and by Lemma 2.13 for t > r,

dGS(gtγ,Sing) ≤ dGS(gtγ, gtγSing) ≤ e−2(t−r).

The proof if λ(gtγ) = 0 holds similarly, but sending t→ −∞ instead.

Furthermore, this allows us to show that the pressure gap for the product flow (condition (3) of Theorem 1.1)

is implied by the pressure gap P (Sing, φ) < P (φ) that we will establish in Section 7.

Proposition 3.7. (Following [5, Proposition 5.1]) Setting Φ(x, y) = φ(x) + φ(y) and λ̃(x, y) = λ(x)λ(y) we

have P (
⋂
t∈R(gt × gt)(λ̃)−1(0),Φ) ≤ P (φ) + P (Sing, φ). In particular, if P (Sing, φ) < P (φ), then P (

⋂
t∈R(gt ×

gt)(λ̃)−1(0),Φ) < 2P (φ).
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Proof . The Variational Principle [21, Theorem 9.10] tells us that

P

(⋂
t∈R

(gt × gt)(λ̃−1),Φ

)
= sup

{
Pν(Φ)

∣∣ ν is flow invariant and ν

(⋂
t∈R

(gt × gt)(λ̃−1)

)
= 1

}
,

where Pν(Φ) := hν(g1 × g1) +
∫

Φ dν denotes the measure-theoretic pressure of (
⋂
t∈R(gt × gt)(λ̃−1), (gt ×

gt),Φ, ν). More generally, this relationship holds for any continuous flow, continuous potential, and compact,

flow-invariant subset.

Consequently, we let ν be an invariant measure supported on
⋂
t∈R(gt × gt)(λ̃)−1(0), and let

A =
⋂
t∈R

(gt × gt)(λ̃)−1(0) ∩ (Reg × Reg).

We will show that ν(A) = 0 by showing that it contains no recurrent points. Assume for contradiction that

(γ1, γ2) ∈ A is a recurrent point, and then assume without loss of generality that λ(γ1) = 0. Since γ1 /∈ Sing,

it follows that dGS(γ1,Sing) = c > 0, which from recurrence, implies that there exists a sequence tk →∞

such that dGS(gtkγ1,Sing) > c
2 , with a similar claim holding in backwards time. However, we also know that

dGS(gtγ1,Sing)→ 0 as t→∞, or as t→ −∞ by Corollary 3.6. Thus, we have arrived at a contradiction. Hence,

ν is supported on the complement of Reg × Reg, which is (Sing ×GS) ∪ (GS × Sing).

Thus,

P

(⋂
t∈R

(gt × gt)(λ̃−1(0)),Φ

)
≤ P ((Sing ×GS) ∪ (GS × Sing),Φ) ≤ P (Sing, φ) + P (GS, φ).

The first inequality is by the Variational Principle. The second inequality is due to the fact that the pressure

of the union of two compact invariant sets is the maximum of the pressure of each individual set [18, Theorem

11.2(3)], and in this case, the pressure of each component of the union is at most P (Sing, φ) + P (GS, φ) by [21,

Theorem 9.8(v)].

We have also constructed λ so that it is lower semicontinuous.

Lemma 3.8. Let s > 0 be such that 2s is less than the shortest saddle connection of S. Then, λ defined in

Definition 3.3 is lower semicontinuous.

Proof . Let γ ∈ GS. We show that for any ε > 0 there exists δ > 0 such that λ(γ)− ε < λ(ξ) for all ξ ∈ GS

such that dGS(γ, ξ) < δ. To ease the arguments below slightly, we work in S̃ with lifts γ̃, ξ̃ so that dGS̃(γ̃, ξ̃) =

dGS(γ, ξ). Recall that by Lemma 2.11, if dGS̃(γ̃, ξ̃) < δ then dS̃(γ̃(0), ξ̃(0)) < 2δ.

If λ(γ) = 0, then we are done as λ is a non-negative function. Therefore, for the rest of the argument we

assume that λ(γ) > 0.
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Case 1: Suppose there exists c ∈ (−s, s) such that ψ := |θ(γ̃, c)| − π > 0. Denote γ̃(c) = p. We show that

there exists δ > 0 such that p ∈ ξ̃((−s, s)).

Let C1 be the cone around γ̃((c, s)) with vertex p and angle ψ′ = min{ψ2 ,
π
4 }. Let C2 be the cone around

γ̃((−s, c)) with vertex p and angle ψ′. (See Figure 2.) Set

δ =
1

2
min

{
1

8
e−2s(s− |c|) sinψ′,

1

2
(s− dS(γ̃(0), p)), min{1, εs/8}(2 + e2|c|)−1

∫ s−|c|

0

2te−2tdt

}
. (3)

Then, we choose u1 = c+s
2 , u2 = c−s

2 and δ1 = s−c
4 sinψ′, δ2 = c+s

4 sinψ′ > 0 so that B1 := B(γ̃(u1), δ1) ⊂ C1 ∩

B(γ̃(0), s) and B2 := B(γ̃(u2), δ2) ⊂ C2 ∩B(γ̃(0), s). By Lemmas 2.11 and 2.14, since δ < 1
8e
−2s(s− |c|) sinψ′,

if dGS̃(γ̃, ξ̃) < δ then ξ̃ passes through B1 and B2. Since any two points in a CAT(0)-space are connected by a

unique geodesic segment and by our construction of C1 and C2, we obtain that if dGS̃(γ̃, ξ̃) < δ then ξ̃ passes

through p. Furthermore, since 2δ + dS(γ̃(0), p) < s, by Lemma 2.11 and the triangle inequality for the triangle

with vertices ξ̃(0), γ̃(0), and p, we have p ∈ ξ̃((−s, s)) if dGS̃(γ̃, ξ̃) < δ. Let t0 ∈ (−s, s) be such that ξ̃(t0) = p.

Moreover, |t0 − c| ≤ 2δ.

γ̃

C1C2

B(γ̃(0), s)

B1
B2

pγ̃(0)

ψ′ψ′

≥ π

Fig. 2. The argument for Case 1 in Lemma 3.8. The geodesic segments connecting points in B2 and B1 meet
at the cone point p with angle ≥ π on both sides. Any geodesic connecting points in B2 and B1 must run through
p.

By the triangle inequality,

dS̃(ξ̃(t0 + t), γ̃(c+ t)) ≤ dS̃(ξ̃(t0 + t), ξ̃(c+ t)) + dS̃(ξ̃(c+ t), γ̃(c+ t)) = |t0 − c|+ dS̃(ξ̃(c+ t), γ̃(c+ t)).



16 B. Call et al.

Let ξ̃1 = gt0 ξ̃ and γ̃1 = gcγ̃. Then, by the above inequality and Lemma 2.14,

dGS̃(ξ̃1, γ̃1) ≤ 2δ + e2|c|δ = (2 + e2|c|)δ. (4)

Moreover, for all t ∈ (0, s− c], we obtain that

dS̃(ξ̃1(t), γ̃1(t)) =


2t if α ≥ π,

2t sin(α/2) if 0 ≤ α ≤ π,

where α is the (unsigned) angle between the outward trajectories of γ̃1 and ξ̃1 from the cone point p.

If α ≥ π, then dGS̃(ξ̃1, γ̃1) ≥
∫ s−c

0
2te−2tdt, which is not possible by (4) and the choice of δ (see (3)).

Consider α ∈ [0, π). Then we have that

sin(α/2) < δ(2 + e2|c|)

(∫ s−c

0

2te−2tdt

)−1

. (5)

Let β be the (unsigned) angle between the inward trajectories γ̃1 and ξ̃1 at p. Similarly to the argument

above, we obtain that for δ as defined in (3),

sin(β/2) < δ(2 + e2|c|)

(
−
∫ 0

−s−c
2te2tdt

)−1

. (6)

Using (5) and (6),

|λ(γ)− λ(ξ)| = 1

s

∣∣|θ(γ̃, c)| − |θ(ξ̃, t0)|
∣∣ ≤ 1

s
(α+ β) ≤ Cδ,

where C = 8
s (2 + e2|c|)

(∫ s−|c|
0

2te−2tdt
)−1

. Thus, for our choice of δ (see (3)), we have |λ(γ)− λ(ξ)| < ε.

Case 2: Assume there exists c1 ≤ −s and c2 ≥ s such that ψ1 := |θ(γ̃, c1)| − π > 0 and ψ2 := |θ(γ̃, c2)| − π >

0. Denote γ̃(c1) = p1 and γ̃(c2) = p2.

Let C1 be the cone around the segment γ̃((c1,−s]) if c1 6= −s or γ̃((−2s,−s)) otherwise with vertex p1 and

angle ψ′ = min{ψ1,ψ2,π}
4 . Let C2 be the cone around the segment γ̃([s, c2]) if c2 6= s or γ̃((s, 2s)) otherwise, with

vertex p2 and angle ψ′. Set

c = min{|c1|, c2} and δ =
1

2
min

{
1

8
e−2s(c− s) sinψ′, min{1, εc/8}(2e2c + 1)−1

∫ ∞
c

2te−2tdt

}
. (7)

Similar to Case 1, by Lemmas 2.11 and 2.14 and the choice of δ in (7), if dGS̃(γ̃, ξ̃) < δ then ξ̃ passes through

p1 and p2. In particular, γ̃ and ξ̃ share a geodesic connecting p1 and p2. Therefore, there exists d such that

gdξ̃(t) = γ̃(t) for t ∈ [c1, c2]. Let t1 and t2 be such that ξ̃(t1) = p1 and ξ̃(t2) = p2. Then, |t1 − c1| ≤ 2e2|c1|δ and
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|t2 − c2| ≤ 2e2c2δ so |d| ≤ 2e2cδ. Moreover, by the triangle inequality,

dGS̃(gdξ̃, γ̃) ≤ (2e2c + 1)δ. (8)

Let α1 and α2 be the (unsigned) angles between the inward and outward trajectories of gdξ̃ and γ̃ at p1

and p2, respectively. Similarly to Case 1, for our choice of δ, we have 0 ≤ α1, α2 ≤ π,

sin(α1/2) ≤ δ(2e2c + 1)

(
−
∫ ∞
c2

2te2tdt

)−1

,

and

sin(α2/2) ≤ δ(2e2c + 1)

(∫ ∞
c1

2te−2tdt

)−1

.

Therefore,

|λss(γ)− λss(ξ)| ≤ Cδ and |λuu(γ)− λuu(ξ)| ≤ Cδ,

where C = 8
c (2e2c + 1)

(∫∞
c

2te−2tdt
)−1

.

Thus, if t1 = c1 + d ≤ −s and t2 = c2 + d ≥ s, then λ(ξ) = min{λss(ξ), λuu(ξ)} and we have |λ(γ)− λ(ξ)| ≤

Cδ < ε.

Otherwise, λ(ξ) ≥ min{λss(ξ), λuu(ξ)} and we have λ(ξ) ≥ λ(γ)− Cδ > λ(γ)− ε.

Remark. Note that for this construction of λ, we do not in general have upper semicontinuity. To see this,

consider a geodesic γ which turns with angle greater than π at times −s and c for some c > 0. Then, for all

r ∈ (0, s], λ(g−rγ) = λss(g−rγ), while λ(γ) = min{λss(γ), λuu(γ)}. Therefore, if λuu(γ) < λss(γ), we have that

λ(γ) = λuu(γ) < λss(γ) = lim
r↓0

λss(g−rγ) = lim
r↓0

λ(g−rγ).

This contradicts upper semicontinuity of λ.

Following §3 of [4], or Definition 3.4 in [5] (and formalizing the idea presented in Section 2.1), we define

G(η) =

{
(γ, t)

∣∣ ∫ ρ

0

λ(gu(γ))du ≥ ηρ and

∫ ρ

0

λ(g−ugt(γ))du ≥ ηρ for ρ ∈ [0, t]

}

and

B(η) =

{
(γ, t)

∣∣ ∫ ρ

0

λ(gu(γ))du < ηρ

}
.

The decomposition we will take is (P,G,S) = (B(η),G(η),B(η)) for a sufficiently small value of η which will be

determined below. We reiterate that because of our choice of decomposition, we do not need to consider the sets

of orbit segments denoted by [P], [S], because of [5, Lemma 3.5].
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While near cone points, positivity of λ only gives us information about the closest cone point, and far from

cone points, it gives us information about cone points on both sides. The following propositions help us quantify

these relationships. Let θ0 be as in Lemma 2.15(d).

Proposition 3.9. If λ(γ) > η, then there is a cone point in γ[− θ0
2η ,

θ0
2η ] with turning angle at least sη away from

±π. In particular, if (γ, t) ∈ G(η), then there exist t1, t2 ∈ [− θ0
2η ,

θ0
2η ] such that γ(t1), γ(t+ t2) ∈ Con, with the

turning angles at these cone points at least sη away from ±π.

Proof . Since λ(γ) > η, either λuu(γ) > η or λss(γ) > η. If λuu(γ) > η, then by Definition 3.3 there is a c ≥ 0

such that γ(c) ∈ Con and λuu(γ) = |θ(γ,c)|−π
max{s,c} . The turning angle at γ(c) satisfies |θ(γ, c)| − π ≤ θ0/2. Thus,

η < λuu(γ) ≤ |θ(γ, c)| − π
c

≤ θ0/2

c

and 0 ≤ c ≤ θ0
2η . Furthermore,

η < λuu(γ) ≤ |θ(γ, c)| − π
s

so the turning angle of γ at c differs from π by at least sη.

A similar argument applies if λss(γ) > η.

Finally, we collect a statement we will need in Section 7.

Lemma 3.10. Given any η > 0, there exists a δ > 0 such that λ(γ) < η for all γ ∈ B(Sing, 2δ).

Proof . Let η > 0 be given and suppose without generality it is small enough that sη
32 < 1. We argue in S̃.

Suppose γ̃ ∈ B(Sing, 2δ) and, in particular, that ξ̃ ∈ Sing with dGS(γ̃, ξ̃) < 2δ. We choose δ < sθ0
64e4θ0/η

and

towards a contradiction suppose that λ(γ̃) > η
2 . (Recall that s is specified in Lemma 3.8, and η0 is specified in

Lemma 2.15(d).)

Since λ(γ̃) > η
2 , by Proposition 3.9, there exists a cone point in γ̃[− θ0η ,

θ0
η ] at which γ̃ turns with angle at

least sη
2 away from ±π. Say γ̃ hits that cone point at time t0 ∈ [− θ0η ,

θ0
η ].

As dGS̃(γ̃, ξ̃) < 2δ, by Lemma 2.14,

dGS̃

(
g− 2θ0

η
γ̃, g− 2θ0

η
ξ̃
)
< 2δe

4θ0
η and dGS̃

(
g 2θ0

η
γ̃, g 2θ0

η
ξ̃
)
< 2δe

4θ0
η .

Then, by Lemma 2.11,

dS̃

(
γ̃

(
−2θ0

η

)
, ξ̃

(
−2θ0

η

))
< 4δe

4θ0
η and dS̃

(
γ̃

(
2θ0

η

)
, ξ̃

(
2θ0

η

))
< 4δe

4θ0
η .

Consider the geodesic segment c connecting ξ̃(− 2θ0
η ) and γ̃(t0). The segment c and γ̃[− 2θ0

η , t0] agree at t0 and

at time − 2θ0
η , at least θ0

η away with respect to dS̃ , are at most 4δe
4θ0
η apart. Comparing to a Euclidean triangle
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and using the CAT(0) property, the angle between these segments at γ̃(t0) is at most 2 sin−1[(4δe
4θ0
η )/(2 θ0η )].

By our choice of δ, this is less than 2 sin−1[ sη32 ] < sη
8 . The same argument applies to the angle between γ̃[t0,

2θ0
η ]

and the segment c′ from γ̃(t0) to ξ̃( 2θ0
η ).

At t0, γ̃ turns with angle at least sη
2 away from ±π. Therefore, the concatenation of c with c′ turns with

angle at least π + sη
4 on both sides, and hence is geodesic. By uniqueness of geodesic segments in S̃, ξ[− 2θ0

η ,
2θ0
η ]

must agree with this concatenation. But this contradicts the fact that ξ ∈ Sing. Therefore, λ(γ) ≤ η
2 < η as

desired.

4 G(η) has weak specification (at all scales)

The goal of this section is to obtain Corollary 4.6 which shows that G(η) has weak specification at all scales.

Lemma 4.1. (Compare with Lemma 3.8 in [16]) Let x ∈ S and β be a geodesic ray with β(0) = x. Then, for

any ε > 0 there exist T0(ε) and a geodesic c which connects x with a point z ∈ Con so that the length of c is at

most T0(ε) and ∠x(β, c) < ε where ∠x(a, b) is the angle at x between geodesic segments a and b.

Proof . Let x̃ ∈ S̃ be a lift of x and β̃ a lift of β with β̃(0) = x̃. Denote by C ε
2
(x̃, β̃) the cone around β with vertex

x̃ and angle ε
2 . Choose T0 = T0(ε) so large that an angle-ε sector of a radius-T0 Euclidean ball contains a ball

of radius much larger than the diameter of S. Then I = BT0(x̃) ∩ C ε
2
(x̃, β̃) is at least as large as this Euclidean

sector and so must contain a fundamental domain of S. Then C̃on ∩ Int(I) 6= ∅, so let z̃ ∈ C̃on ∩ Int(I) such

that z̃ is closest to x̃. The segment c̃ = x̃z̃ is a geodesic of length at most T0. The projection of c̃ to S is the

desired geodesic.

Lemma 4.2. For any δ > 0, there exists T1 = T1(δ) such that for any t > 0 and (γ, t) ∈ G(η), (γ, t) is δ-shadowed

by a saddle connection path γe in the following sense:

• `(γe) ≤ t+ 2T1

• there exists s0 ∈ [0, T1] with the property that if γce is any extension of γe to a complete geodesic then

dGS(gu(γ), gu(gs0(γce))) ≤ δ for all u ∈ [0, t].

In particular, if t > θ0
η , there exists a closed interval I ⊃ [ θ02η , t−

θ0
2η ] such that γe(s0 + u) = γ(u) for u ∈ I.

Proof . As usual, we prove the result in S̃. Let T = max{− log(δ), θ02η ,
`0
4 } where θ0 and `0 are from

Lemma 2.15. By Lemma 2.12, if we construct γ̃e such that dS̃(γ̃(u), γ̃e(s0 + u)) < δ
2 for all u ∈ [−T, t+ T ],

then dGS(gu(γ), gu(gs0(γce))) ≤ δ for all u ∈ [0, t]. (See Figure 3 for the constructions in this proof.)

By Proposition 3.9, there exist t0, t1 ∈ [− θ0
2η ,

θ0
2η ] such that γ̃(t0), γ̃(t+ t1) ∈ C̃on, |θ(γ̃, t0)| − π ≥ sη and

|θ(γ̃, t+ t1)| − π ≥ sη. Thus, there exist s1 ∈ [−T, θ02η ] and s2 ∈ [− θ0
2η , T ] such that γ̃(s1), γ̃(t+ s2) ∈ C̃on and

(γ̃([−T, s1)) ∪ γ̃((t+ s2, t+ T ])) ∩ C̃on = ∅.

If s1 = −T , then define γ̃e(u− s1) = γ̃(u) for u ∈ [s1, t+ s2]. Assume s1 > −T . Let η0 be as in

Lemma 2.15(b). Choose α < `0
4(T+

θ0
2η )

min{η0,
δ

2(
θ0
2η+T )

}. Let C be the cone in S̃ around γ̃([−T, s1]) with angle
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· · ·
γ̃

γ̃e

γ̃(s1)

γ̃(−T )

p̃1

p̃2

π

π

C

Fig. 3. The construction of γe in Lemma 4.2 around the left endpoint of γ. The sequence of α-cones featured
in the proof is shaded.

α/2. Note that α < η0, so any geodesic segment from a point in C to γ̃(s1) can be concatenated with

γ̃([s1, t]) to form a geodesic. By Lemma 4.1, there exists T0 = T0(α2 ) ≥ T + θ0
2η and a point p̃1 in C̃on ∩ C

such that dS̃(p̃1, γ̃(s1)) ≤ T0. Choose p̃1 as in the previous sentence minimizing the distance to γ̃([−T0, s1]). If

dS̃(p̃1, γ̃(s1)) ≥ T + θ0
2η , then let the initial segment of γ̃e be the geodesic segment [p̃1, γ̃(s1)].

Otherwise, we repeat the argument above, applying Lemma 4.1 to construct an angle-α/2 cone centered

around the geodesic segment making angle π + α
2 with [p̃1, γ̃(s1)]. We get a point p̃2 ∈ C̃on in this cone with

dS̃(p̃1, p̃2) ≤ T0, again chosen to minimize the distance to γ̃([−T0, s1]). If dS̃(p̃2, γ̃(s1)) ≥ T + θ0
2η , then let the

initial segment of γ̃e be the concatenation of geodesic segments [p̃2, p̃1] and [p̃1, γ̃(s1)]. This concatenation is a

geodesic by the choice of α and the construction of the cone. Otherwise, repeat the procedure at p̃2 and so on.

We will need to repeat this procedure at most
T+

θ0
2η

`0
times. We extend the beginning of γ̃e constructed here

with [γ̃(s1), γ̃(t+ s2)] and then extend beyond γ̃(t+ s2) (if needed) similarly to the procedure at γ̃(s1). Since

the turning angles at each cone point are at least π, we obtain a saddle connection path γ̃e.

Let T1 = T + θ0
2η + T0. Let s0 be such that γ̃e(s0 + s1) = γ̃(s1). Then s0 ∈ [0, T1]. For u ∈ [s1, s2],

dS̃(γ̃(u), γ̃e(s0 + u)) = 0 < δ
2 , as desired. For u ∈ [−T, s1], note that the sequence of cones used in the proof

have angles α
2 and α < `0

4(T+
θ0
2η )

δ

2(
θ0
2η+T )

. There are at most
T+

θ0
2η

`0
of these cones, each segment from p̃i to p̃i+1

is at most length T + θ0
2η , and we always choose our cone points p̃i as close to γ̃ as we can. Therefore, the

distance dS̃(γ̃(u), γ̃s(s0 + u) is bounded by δ
2 for u ∈ [−T, s1]. For the same reason, this bound also holds for

u ∈ [s2, t+ T ], finishing the proof.

Lemma 4.3. (Compare with Lemma 3.9 in [16]) Let N = [ 4π
η0

] + 3 where η0 is from Lemma 2.15(c). Let q ∈ Con.

Then there exist N saddle connections σ1, σ2, . . . , σN emanating from q with the following property:

For any geodesic segment γ with endpoint q, the concatenation of γ with at least one σi is also a local

geodesic.

Proof . We have L(q) = 2π + α ≥ 2π + η0. Divide the space of directions at q into intervals of size no more

than α
2 ; at most d 2π+α

α/2 e ≤ N intervals are needed. Using Lemma 4.1, pick a saddle connection emanating from

q with direction in each of these intervals. These are the σi.
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The concatenation of γ and some saddle connection σi is a geodesic if and only if ci lies outside of the

π-cone of directions at q around γ. The complement of this cone in the space of directions at q is an interval of

size L(q)− 2π = α and must therefore fully contain one of our α
2 -size intervals. The σi chosen in this interval

geodesically continues γ as desired.

Lemma 4.4. (Compare with Corollary 3.1 in [16]) For any two parametrized saddle connections σ, σ′ on S

there exists a geodesic segment γ which first passes through σ and eventually passes through σ′.

Proof . Let α be a closed geodesic which turns with angle greater than π at a cone point p (such α exists by

Lemma 2.20). Denote by σ̃ the lift of σ to S̃ which has the starting point ã and the endpoint b̃. Consider a

parametrized complete lift α̃ of α such that it is disjoint from σ̃ and its positive endpoint is contained in the

complement of the cone around [ã, b̃] with vertex b̃ and angle π. Denote by c̃t : [0, `t]→ S̃ the geodesic that

connects ã with α̃(t). By the choice of the lift α̃, there is a time t0 such that for all t ≥ t0, c̃t passes through b̃

and that c̃t0 only shares its endpoint with α̃.

We now need the following fact.

Sublemma. There exists t1 > t0 such that c̃t1 intersects the geodesic segment [α̃(t0), α̃(t)] in a positive-length

segment.

Proof of Sublemma. Consider the geodesic triangle in S̃ with vertices ã, α̃(t0) and α̃(t) for t > t0. As t

increases, the length of the side [α̃(t0), α̃(t)] increases without bound while the length of [ã, c̃(t0)] is fixed, so the

length of c̃t = [ã, α̃(t)] must also increase without bound once t is sufficiently large, by the triangle inequality.

The comparison triangles in R2 will have one side of fixed length while the other two become very long. The

angle at the vertex of the comparison triangle where the long sides meet must therefore become arbitrarily small.

At each lift of the cone point p that α passes through, α̃ has turning angle π + θ for some θ > 0. Let

T be so large that the angle noted above in the Euclidean comparison triangle is < θ. As S̃ is CAT(0), the

original triangle in S̃ has angles no larger than those in the comparison triangle. Thus, the angle between c̃t

and [α̃(t0), α̃(t)] will be less than θ for all t ≥ T . Let t′ be any time greater than T at which α̃ passes through a

lift of the cone point and let t1 > t′. Since α̃ turns with excess angle θ at α̃(t′), the concatenation of c̃(t′) and

α̃([t′,∞)) is a geodesic ray. Therefore c̃t1 and [α̃(t0), α̃(t)] intersect in a positive-length segment.

For t1 as in the Sublemma, the projection of c̃t1 to S is a local geodesic which first passes through σ and

eventually through a piece of α. By extending the resulting local geodesic along α, we can make sure that it

passes through the whole curve α. We denote the resulting local geodesic by g1.

We apply the above argument to σ′ and α with their orientations reversed to obtain a local geodesic g2

that connects these curves.

The concatenation of g1 and g2 (with its orientation reversed) has the desired property.
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Repeating the proof of Proposition 3.2 in [16], replacing [16, Lemma 3.9] by Lemma 4.3 and [16, Corollary

3.1] by Lemma 4.4, we obtain Proposition 4.5 which strengthens Lemma 4.4. We include the proof of the

proposition for completeness.

Proposition 4.5. (Compare with Proposition 3.2 in [16]) There exists a constant C(S) > 0 so that the following

holds:

For any two parametrized saddle connections σ, σ′ on S there exists a geodesic segment γ which first passes

through σ and eventually passes through σ′ and which is of length at most C(S) + `(σ) + `(σ′).

Proof . Recall that S has only finitely many cone points. By Lemma 4.3, there are N0 = N0(S) parametrized

saddle connections σ1, σ2, . . . , σN0
with the property that for any geodesic segment with endpoint in Con (in

particular, any saddle connection) the concatenation of it with at least one σi is a local geodesic. By Lemma 4.4,

for each pair (σi, σj) there is a local geodesic cij which first passes through σi and eventually through σj . Since

there are only finitely many pairs (σi, σj), there exists a constant C(S) such that `(cij) ≤ C(S). Thus, for any

two parametrized saddle connections σ, σ′ we do the following. First, we connect the endpoint of σ to σi for

some i and the starting point of σ′ (the endpoint of the saddle connection with the reversed parametrization

of σ′) to σj for some j so that the results of concatenations are local geodesics. Then, the concatenation of σ

with cij followed by the concatenation with σ′ is the desired geodesic segment which first passes through σ and

eventually through σ′ of length at most C(S) + `(σ) + `(σ′).

Using Lemma 4.2 and Proposition 4.5, we obtain the weak specification property on G(η) at all scales.

Corollary 4.6. (Weak specification) For all δ > 0 there exists T = T (η, δ, S) > 0 such that for all

(γ1, t1), . . . , (γk, tk) ∈ G(η) there exist 0 = s1 < s2 < . . . < sk and a geodesic γ on S such that for all i = 1, . . . , k

we have si+1 − (si + ti) ∈ [0, T ] and dGS(gu(γi), gu(gsi(γ)) < δ for all u ∈ [0, ti].

Proof . We can take T = 2T1 + C(S) where T1 is as in Lemma 4.2 and C(S) is as in Proposition 4.5. We omit

the proof here as it is a simplified version of the proof of Proposition 5.6.

5 G(η) has strong specification (at all scales)

The goal of this section is to upgrade the weak specification property of Corollary 4.6 to strong specification

(Proposition 5.6), in which we have more precise control over when our shadowing geodesic shadows each

segment.

As η is fixed throughout, we write G := G(η).

Lemma 5.1. If G ⊂ R≥0 6⊂ cN for all c > 0, then for all δ > 0, there exist x, y ∈ G and n,m ∈ N such that

0 < nx−my < δ.
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Proof . Let x denote the smallest non-zero element of G, which exists, as otherwise we are immediately done.

Now, there are three cases.

First, assume there exists y ∈ G such that y
x /∈ Q. Now take q ∈ N large enough so that x

q < δ, and so that

there is p ∈ N with | yx −
p
q | <

1
q2 by Dirichlet’s theorem. Then, this implies that

|qy − px| < x

q
< δ.

In the second case, suppose that for all y ∈ G, yx is rational, and when written in lowest terms, the denominators

can be arbitrarily large. Then, take n such that x
n < δ and y ∈ G with y

x = p
q in lowest terms for some q > n.

Then, as p is invertible in Z/qZ, we can take m to be a positive integer such that mp = 1 (mod q). It follows

that ∣∣∣∣mp− 1

q
x−my

∣∣∣∣ =
x

q
< δ.

Finally, in the third case, yx is always rational, but with denominators bounded above byM . Then,G ⊂ x
M !N,

a contradiction.

Lemma 5.2. Suppose x > y > 0 and x− y = δ. Then, there exists T > 0 such that for all τ ≥ T and all

n ∈ N ∪ {0}, there exists m1,m2 ∈ N such that τ + nδ ≤ m1x+m2y ≤ τ + (n+ 1)δ.

Proof . Fix C such that C > y
δ + 2. We claim that T = max{Cy, 1}. Fix τ ≥ T . Now, let n ∈ N ∪ {0}. Fix k1

to be the largest integer such that k1y ≤ τ + nδ and then choose k2 to be the smallest positive integer such that

k1y + k2δ ≥ τ + nδ. Therefore, we see that k2x+ (k1 − k2)y = k1y + k2δ, and so

τ + nδ ≤ k2x+ (k1 − k2)y ≤ τ + (n+ 1)δ.

Observe that by construction,

k1y + (k2 − 1)δ < τ + nδ < k1y + y,

and consequently, k2 <
y
δ + 1. Therefore, by our choices of τ and C,

k1 >
τ + nδ − y

y
>
Cy − y
y

>
y

δ
+ 1.

Thus, k1 − k2 > 0, and we are done.

We need the following result of Ricks; we explain the necessary terminology in the course of applying it:

Theorem 5.3. [19, Theorems 4 and 5] Let X be a proper, geodesically complete, CAT(0) space under a proper,

cocompact, isometric action by a group Γ with a rank one element, and suppose X is not isometric to the real

line. Then, the length spectrum is arithmetic if and only if there is some c > 0 such that X is isometric to a

tree with all edge lengths in cZ.
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Proposition 5.4. Given δ > 0, there exist two closed saddle connection paths γ, ξ such that 0 < |`(γ)− `(ξ)| <

δ.

Proof . This follows for translation surfaces by combining Lemma 5.1 with §6 of [12] (see hypothesis (T3) and

the discussion following [12, Proposition 6.9]).

For general flat surfaces with conical points, this follows from Theorem 5.3. We outline the reasoning as

follows. We say that γ ∈ Γ is rank one if there exists a geodesic η such that γη = gtη for some t > 0 and η

does not bound a flat half plane, i.e., a subspace isometric to R× [0,∞). The existence of this follows from

the existence of a closed geodesic which turns with angle greater than π at some cone point (see Lemma 2.20).

Now, the universal cover of a flat surface with cone points is not isometric to a tree with edge lengths in cZ,

and so it follows that the length spectrum is not arithmetic. The length spectrum is the collection of lengths of

hyperbolic isometries in Γ, which is precisely the set of lengths of closed geodesics, which by Lemma 2.18 is the

set of lengths of closed saddle connection paths. We can now apply Lemma 5.1.

Proposition 5.5. For all δ > 0, there exists τ = τ(δ) > 0 and δ′ < δ such that for any τ ′ > τ , any two saddle

connections σ, σ′ and any n ∈ N ∪ {0}, there exists a geodesic segment ξn which begins with σ and ends with

σ′ with length in [`(σ) + `(σ′) + τ ′ + nδ′, `(σ) + `(σ′) + τ ′ + (n+ 1)δ′].

Proof . Fix δ > 0 and take γ1, γ2 to be closed geodesics such that 0 < |`(γ1)− `(γ2)| = δ′ < δ, which exist by

Proposition 5.4. Now take τ = 3C(S) + T , where C(S) is from Proposition 4.5 and T is from Lemma 5.2 applied

for `(γ1) and `(γ2).

Consider two saddle connections σ and σ′ and apply Proposition 4.5 three times to connect, in sequence,

σ to γ1 to γ2 to σ′ with the geodesic ξ. Furthermore, `(ξ) = L+ `(σ) + `(γ1) + `(γ2) + `(σ′) and L ≤ 3C(S).

Because the γi are closed geodesics, there is a geodesic ξk1,k2 which follows the exact path of ξ except that

it loops around γi a total of ki times. In other words, `(ξk1,k2) = `(ξ) + (k1 − 1)`(γ1) + (k2 − 1)`(γ2). Now let

n ∈ N, and, using Lemma 5.2, take k1, k2 such that

k1`(γ1) + k2`(γ2) ∈ [T + (3C(S)− L) + (τ ′ − τ) + nδ′, T + (3C(S)− L) + (τ ′ − τ) + (n+ 1)δ′].

Then ξn := ξk1,k2 satisfies our desired property.

Proposition 5.6. The collection of orbit segments G = G(η) has strong specification at all scales. That is, for

any ε > 0, there exists τ̂(ε) > 0 such that for any finite collection {(γi, ti)}ni=1 ⊂ G, there exists ξ̂ ∈ GS that

ε-shadows the collection with transition time τ̂ between orbit segments. In other words, for 1 ≤ i ≤ n,

dGS(gu+
∑i−1
j=1(tj+τ̂)ξ̂, guγi) ≤ ε for 0 ≤ u ≤ ti.
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Moreover, for 1 ≤ i ≤ n such that ti >
θ0
η where θ0 as in Lemma 2.15(d), there exists a closed interval

Ii ⊃ [ θ02η , ti −
θ0
2η ] such that ξ̂(u+

∑i−1
j=1(tj + τ̂)) = γi(u) for u ∈ Ii.

Proof . By Lemma 4.2, there exists T1 = T1( ε2 , S) for each i = 1, . . . , n, there exists a saddle connection path

γei such that `(γei ) ≤ ti + 2T1 and there exists si ∈ [0, T1] such that for any extension γ̂ei of γei to a complete

geodesic we have

dGS(gu(γi), gu(gsi(γ̂
e
i ))) ≤ ε

2
for all u ∈ [0, ti].

Moreover, if ti >
θ0
η , there exists a closed interval Ii ⊃ [ θ02η , ti −

θ0
2η ] such that γei (si + u) = γi(u) for u ∈ Ii. We

will construct our shadowing geodesic by induction. Let τ = τ
(
ε
4

)
, δ′ < ε

4 be as in Proposition 5.5 applied for

δ = ε
4 . Denote T = τ + 3T1.

Thus, for any k = 1, . . . , n− 1 and mk ∈ N ∪ {0}, there exists a geodesic segment ξk+1 which begins

with γek and ends with γek+1 with length `(ξk+1) = `(γek) + `(γek+1) + T − (sk+1 − sk)− (`(γek)− tk) + ck where

ck ∈ [mkδ
′, (mk + 1)δ′].

Moreover, by Lemma 4.2, for any extension ξ̂k+1 of ξk+1 to a complete geodesic with ξ̂k+1(u) = ξk+1(sk + u)

for all u ∈ [−sk,−sk + `(ξk+1)], we have

dGS(guξ̂k, guγk) ≤ ε

2
for all u ∈ [0, tk] and

dGS(gu(gtk+T+ck ξ̂k+1), guγk+1) ≤ ε

2
for all u ∈ [0, tk+1]. (9)

We define the sequence mk inductively. Let m1 = 0. In particular, c1 ∈ [0, δ′] ⊂ [0, ε4 ]. For k > 1, we set

mk = d ε
4δ′
e if (k − 1)

ε

4
−
∑
i≤k−1

ci >
ε

4
, and 0 otherwise,

as this ensures
∣∣∣∑k−1

j=1
ε
4 − cj

∣∣∣ < ε
2 .

Let ξ be a geodesic segment that is a result of gluing ξk and ξk+1 along γek that is the end of ξk and

the beginning of ξk+1 for all k = 2, . . . , n− 1. Let ξ̂ be any extension of ξ to a complete geodesic with the

parametrization such that ξ̂(−s1) = ξ(0). By the choice of mk and (9), we obtain for 1 ≤ i ≤ n,

dGS(gu(g∑i−1
j=1(tj+T+ε/4)ξ̂), guγi) ≤ dGS(gu(g∑i−1

j=1(tj+T+cj)
ξ̂), guγi) +

ε

2
≤ ε for all u ∈ [0, ti].

Thus, ξ̂ is the desired shadowing geodesic. As a result, the collection of orbit segments G has strong

specification at all scales with the specification constant T + ε
4 .

We close this section by recording a simple technical modification of Proposition 5.6 which we will need

when we apply specification in Section 7.



26 B. Call et al.

Definition 5.7. Let M > 0 and η > 0 be given. We denote by GM (η) the set of all orbit segments (γ, t) such

that there exist t1, t2 with |ti| < M such that (gt1γ, t− t1 + t2) ∈ G(η). That is, these are segments which lie in

G(η) after making some bounded change to their endpoints.

Corollary 5.8. Specification as in Proposition 5.6 holds for GM (η), with the constant T depending on M in

addition to the parameters listed in Proposition 5.6.

Proof . This is a simple exercise using Proposition 5.6 and uniform continuity of the geodesic flow. We give

the idea of the proof. Let {(γi, ti)}ni=1 ⊂ GM (η) be a collection of segments which we wish to shadow at scale ε.

This leads to a collection {(gsiγi, t′i)}ni=1 ⊂ G(η), where |si| ≤M and |ti − t′i| ≤M which we can shadow at any

scale as in Proposition 5.6. We choose our new shadowing scale δ so that if dGS(γ, ξ) < δ, then dGS(gtγ, gtξ) < ε

for t ∈ [−M,M ], using uniform continuity of the flow. Any geodesic which δ-shadows {(gsiγti , t′i)} must then

ε-shadow our desired collection {(γi, ti)}.

6 G(η) has the Bowen property

In this section we establish the Bowen property (see Definition 2.9). To do so, we analyze orbits that stay close to

a good orbit segment for some time. This description will allow us to effectively bound the difference of ergodic

averages along these orbits.

Proposition 6.1. For all η > 0, for all sufficiently small ε > 0 (dependent on η), and for any (γ, t) ∈ G(η) with

t > 2 θ02η , we have

Bt(γ, ε) ⊂ C2ε,
θ0
2η

(γ, t),

where

Bt(γ, ε) = {ξ ∈ GS | dGS(guγ, guξ) < ε for all u ∈ [0, t]}

and

C
2ε,

θ0
2η

(γ, t) =

{
ξ
∣∣ ∃|r| ≤ 2ε such that grξ(u) = γ(u) for all u ∈

[
θ0

2η
, t− θ0

2η

]}
.

Proof . Fix η > 0, and recall Proposition 3.9. Now choose ε > 0 small enough that s sin( sη4 ) > 2εe2(
θ0
2η+s). (Here

s is the parameter involved in the definition of λ, and fixed in Lemma 3.8.) Consider a cone around some geodesic

with angle sη
4 . By an easy computation, the ball of radius 2εe2(

θ0
2η+s) with center at distance s from the cone

point along the geodesic is contained in the cone (recall that s > 0 was chosen so that 2s < `0).

Let (γ1, t) ∈ G(η) with t > θ0
η be arbitrary. By Proposition 3.9, there exists t0 ∈ [− θ0

2η ,
θ0
2η ] such that

γ1(t0) ∈ Con and |θ(γ1, t0)| − π ≥ sη. Similarly, there exists t1 ∈ [− θ0
2η ,

θ0
2η ] such that γ1(t+ t1) ∈ Con and

|θ(γ1, t+ t1)| − π ≥ sη.
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Now consider γ2 ∈ Bt(γ1, ε). Taking t0 and t1 as above, by Lemmas 2.11 and 2.14,

dS(γ1(t0 − s), γ2(t0 − s)) ≤ 2dGS(gt0−sγ1, gt0−sγ2) ≤ 2dGS(γ1, γ2)e2| θ02η−s| ≤ 2εe2(
θ0
2η+s), (10)

and

dS(γ1(t+ t1 + s), γ2(t+ t1 + s)) ≤ 2dGS(gt1+sgtγ1, gt1+sgtγ2) ≤ 2dGS(gtγ1, gtγ2)e2|t1+s| ≤ 2εe2(
θ0
2η+s). (11)

Let γ̃1 and γ̃2 be lifts of γ1 and γ2 to GS̃ so that dGS̃(γ̃1, γ̃2) = dGS(γ1, γ2). Let B1 = B(γ̃1(t0 −

s), 2εe2(
θ0
2η+s)) and B2 = B(γ̃1(t+ t1 + s), 2εe2(

θ0
2η+s)). Then, by (10) and (11) and the remarks in the first

paragraph of this proof, γ2 intersects B1 and B2. Since |θ(γ1, t0)| − π ≥ sη and |θ(γ1, t+ t1)| − π ≥ sη, by the

choice of ε and the fact that any two points in a CAT(0)-space are connected by a unique geodesic segment,

γ̃2 contains γ̃1[t0, t+ t1]. Moreover, since dGS̃(gt0+sγ̃1, gt0+sγ̃2) ≤ ε and 0 ≤ t0 + s ≤ 2s < t, it follows that

dS(γ̃1(t0 + s), γ̃2(t0 + s) ≤ 2ε. Thus, there exists r such that |r| ≤ 2ε and grγ2(u) = γ1(u) for u ∈ [t0, t+ t1].

Since t0 ≤ θ0
2η and t1 ≥ − θ0

2η , we have completed our proof.

Proposition 6.2. For all ε, s > 0 and α-Hölder continuous functions φ, there exists K > 0 such that for all

geodesic segments (γ1, t) with t > 2 θ02η , given any γ2 ∈ C2ε,s(γ1, t), we have

∣∣∣∣∫ t

0

φ(grγ1)− φ(grγ2) dr

∣∣∣∣ ≤ K.

Proof . Let R be the time-shift in the definition of C2ε,s(γ1, t), so that gRγ2(r) = γ1(r) for r ∈ [s, t− s]. We see

that

∣∣∣∣∫ t

0

φ(grγ1)− φ(grγ2) dr

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

0

φ(grγ1) dr −
∫ t−R

−R
φ(gr(gRγ2)) dr

∣∣∣∣∣
≤
∣∣∣∣∫ t−s

s

φ(grγ1)− φ(gr(gRγ2)) dr

∣∣∣∣+ (4s+ 2|R|)‖φ‖.

Since γ1 = gRγ2 on [s, t− s], by Lemma 2.13, we have for all r ∈ [s, t− s]

dGS(grγ1, gr(gR)γ2) ≤ e−2 min{|r−s|,|r−(t−s)|}.
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Thus we obtain

∣∣∣∣∫ t−s

s

φ(grγ1)− φ(gr(gRγ2)) dr

∣∣∣∣ ≤ ∫ t−s

s

C(dGS(grγ1, gr(gRγ2)))α dr

≤
∫ t

2

s

Ce−2α(r−s) dr +

∫ t−s

t
2

Ce−2α((t−s)−r) dr

=
C

α
(1− e−α(t−2s))

≤ C

α
.

As a result, since |R| < 2ε, we have

∣∣∣∣∫ t

0

φ(grγ1)− φ(grγ2) dr

∣∣∣∣ ≤ C

α
+ (4s+ 4ε)‖φ‖.

Corollary 6.3. For all η > 0, there exists ε > 0 such that G(η) has the Bowen property at scale ε.

Proof . Fix η > 0. Then, choose ε > 0 sufficiently small to apply the previous propositions. Then, we can take

the constant for the Bowen property to be max{K, 2 θ0η ‖φ‖}, where K is from the previous proposition. Then, the

previous proposition gives the desired bound for orbit segments of length at least θ0
η , and the triangle inequality

gives the desired bound for any shorter orbit segments.

7 Establishing the Pressure Gap

In this section, we prove the pressure gap condition of [4] for certain potentials. We then show that this pressure

gap holds in the product space as well. See also the survey by Climenhaga and Thompson [11, Section 14].

First, we prove the following theorem.

Theorem 7.1. Let φ be a continuous potential that is locally constant on a neighborhood of Sing. Then,

P (Sing, φ) < P (φ).

Furthermore, we use the above theorem to note that a pressure gap also holds for functions that are nearly

constant. (See Corollary 7.8.) For a sense of the functions covered by Theorem 7.1, it may be helpful to think

of the special case of a translation surface. There are infinitely many cylinders in such an S, and the geodesics

circling different cylinders are in different connected components of Sing, so there is significant flexibility in

building a function that satisfies Theorem 7.1 on Sing itself, let alone on the complement of its neighborhood.

Our argument for Theorem 7.1 closely follows that in §8 of [4]. The different geometry in our situation calls

for somewhat different arguments in Proposition 7.4 and Lemma 7.5, which we present here in full. After these

are proved, the argument hews closely to [4]. We present the main steps of the argument, filling in the details

where a modification is necessary for the present situation.
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For any η > 0, we let

Reg(η) = {γ | λ(γ) ≥ η}.

We need a pair of Lemmas in this section.

Lemma 7.2. Let c be any singular geodesic segment. That is, c is a geodesic segment such that the turning

angle at any cone points it encounters is always ±π. Then c can be extended to a complete geodesic γ ∈ Sing.

Proof . The extension is accomplished by following the geodesic trajectory established by c and, whenever a

cone point is encountered, continuing the extension so that a turning angle of π or −π is made.

Let ∂∞S̃ be the boundary at infinity of S̃, equipped with the usual cone topology (see, e.g., [3, §II.8]). Since

S is a surface, ∂∞S̃ is a circle. Using this identification, we can speak of a path in ∂∞S̃ as being monotonic if

it always moves in a clockwise or counterclockwise direction.

The following Lemma leverages this structure to provide a way to continuously move a geodesic in GS̃.

Lemma 7.3. Let γ̃ ∈ GS̃ with γ̃(t0) = ξ ∈ C̃on. Let ζv be a continuous and monotonic path in ∂∞S̃ with

ζ0 = γ̃(+∞) such that for all v, the ray connecting ξ with ζv can be concatenated with γ̃(−∞, t0) to form a

geodesic γ̃v. Then {γv} is a continuous path of geodesics in GS̃ with dGS̃(γ̃, γ̃v) non-decreasing in |v|.

Proof . First, that ξ and ζv can be connected with a unique geodesic ray is a standard fact about CAT(0)

spaces ([3, §II.8, Prop 8.2]). For continuity of γ̃v, we claim that if v → v0, dS̃(γ̃v(t), γ̃v0(t))→ 0 uniformly on any

[t0, T ]. This together with the formula for dGS̃ will show that dGS̃(γv, γv0)→ 0. To verify the claim, fix T > t0

and ε > 0 and recall that in the cone topology on ∂∞S̃,

U(γ̃v0 , T, ε) := {ζ ∈ ∂∞S̃ : dS̃(c(T ), γ̃v0(T )) < ε where c is the geodesic ray from ξ to ζ}

is a basic open set around ζv0 = γ̃v0(+∞) ([3, §II.8]). Therefore, for v sufficiently close to v0, ζv ∈ U(γ̃v0 , T, ε).

But the ray c from ξ to ζv is precisely γ̃v|[t0,+∞). Thus dS̃(γ̃v(T ), γ̃v0(T )) < ε. Since the distance between two

geodesics is a convex function of the parameter ([3, §II.2]) and dS̃(γ̃v(t0), γ̃v0(t0)) = 0, for all t ∈ [t0, T ] we have

dS̃(γ̃v(t), γ̃v0(t)) < ε and hence have the desired uniform convergence.

For all t ≤ t0, dS̃(γ̃(t), γ̃v(t)) = 0. We claim that for t > t0, dS̃(γ̃(t), γ̃v(t)) is non-decreasing in |v|. Together

with the formula for dGS̃ , this will provide the result.

Fix some v∗ 6= 0; without loss of generality, we can assume v∗ > 0. Since ζv is a monotonic path on ∂∞S̃,

v 7→ γ̃v(t) sweeps out an arc on the circle of radius t− t0 centered at ξ monotonically (though not necessarily

strictly monotonically). We want to show that for v > v∗, dS̃(γ̃(t), γ̃v(t)) ≥ dS̃(γ̃(t), γ̃v∗(t)). This will be trivially

true if for all v > v∗, γ̃v(t) = γ̃v∗(t), so we can assume this is not the case.

Consider the path swept out by v 7→ γ̃v(t). Near the point γ̃v∗(t) this path consists of arcs of two Euclidean

circles meeting at γ̃v∗(t). To each side of γ̃v∗(t), the arc belongs to a circle centered at the cone point on
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[ξ, γ̃v∗(t)] \ {γ̃v∗(t)} closest to γ̃v∗(t) among those cone points where [ξ, γ̃v∗(t)] makes angle greater than π on

the given side of [ξ, γ̃v∗(t)]. Therefore in the space of directions at γ̃v∗(t) (this will be the tangent space at γ̃v∗(t)

unless γ̃v∗(t) happens to be a cone point) we have well-defined vectors pointing along these arcs. Furthermore,

since these are arcs of Euclidean circles, the angles between these two vectors and a vector pointing radially

along [γ̃v∗(t), ξ] are both π
2 . Let W+ and W− be vectors in the space of directions at γ̃v∗(t) pointing along the

arc swept out by v 7→ γ̃v(t) with W+ pointing in the direction swept out as v increases past v∗ and W− in the

direction swept out as v decreases from v∗. (Note that v 7→ γ̃v(t) may be constant in v for v near v∗ due to

cone points γ̃v∗ encounters at times greater than t. The vectors W± are tangent to a reparametrization of this

curve by arc-length, for example.) Similarly, let H± be the vectors in the space of directions at γ̃v∗(t) pointing

along the circle of radius dS̃(γ̃(t), γ̃v∗(t)) centered at γ̃(t). Let V1 be the initial tangent vector for the geodesic

segment from γ̃v∗(t) to ξ and let V2 be the initial tangent vector for the geodesic segment from γ̃v∗(t) to γ̃(t).

By the CAT(0) condition and using a comparison triangle for the triangle with vertices ξ, γ̃(t), and γ̃v∗(t) it is

easy to check that the angle between V1 and V2 is in [0, π2 ). The angles between W± and V1 and between H±

and V2 are all π
2 as these are angles between a circle and one of its radial segments. (See Figure 4.)

ξ γ̃(t)

γ̃v∗(t)

V1
V2

W+

W−

H+

H−

Fig. 4. The proof that dS̃(γ̃(t), γ̃v(t)) is non-decreasing in |v|.

The segment [γ̃v∗(t), γ̃(t)] lies in the convex hull of γ̃ and γ̃v∗ . By the CAT(0) condition, it is within the

ball of radius t− t0 centered at ξ. So V2, which points along [γ̃v∗(t), γ̃(t)], is between V1 and W− in the space

of directions at γ̃v∗(t). More precisely, the space of directions at γ̃v∗(t) is a circle with total length equal to the

total angle at γ̃v∗(t). V2 is between V1 and W− in the sense that it lies within the angle-π2 arc of directions

connecting V1 and W− in the space of directions. Thus, the angle between V2 and W− is less than or equal to

π
2 and so the angle between V2 and W+ is at least π

2 .

If the angle between V2 and W+ is π
2 , then the geodesic segment [γ̃(t), γ̃v∗(t)] must run through ξ and then

for v > v∗, dS̃(γ̃(t), γ̃v(t)) = 2(t− t0) = dS̃(γ̃(t), γ̃v∗(t)). If the angle is strictly less than π
2 then in the space of

directions, W+ is separated from V2 by H±. This means that as the path v 7→ γ̃v(t) leaves the point γ̃v∗(t) with
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v increasing, it must move – at least initially – to the outside of the circle of radius dS̃(γ̃(t), γ̃v∗(t)) centered

at γ̃(t). In particular, dS̃(γ̃(t), γ̃v∗(t)) is locally monotonically increasing near v∗. As v∗ was arbitrary (among

v such that γ̃v give geodesic extensions of γ̃(−∞, t0)), and the path v 7→ γ̃v(t) is connected, this completes our

proof of the claim and the lemma.

The first step in the dynamical argument for a pressure gap is the following technical Proposition, which

allows us to find a regular geodesic which is close to any connected component of the δ-neighborhood of the

singular set.

Proposition 7.4. Let δ > 0 and 0 < η < η0
2s be given, where η0 is defined in Lemma 2.15(b). Then there exists

L > 0 and a family of maps Πt : Sing→ Reg(η) such that for all t > 3L and for all γ ∈ Sing, if we write c = Πt(γ)

then the following are true:

(a) c, gt+t′c ∈ Reg(η) for some |t′| < 4d0;

(b) dGS(grc,Sing) < δ for all r ∈ [L, t− L];

(c) for all r ∈ [L, t− L], grc and γ lie in the same connected component of B(Sing, δ), the δ-neighborhood of

Sing.

Furthermore, c(0), c(t+ t′) ∈ Con, any c ∈ Πt(Sing) is entirely determined (among the geodesics in Πt(Sing))

by the segment c[0, t+ t′], and dS̃(γ(0), c(0)), dS̃(γ(t), c(t+ t′)) < 2d0 where d0 is as in Lemma 2.15(a).

Remark. The above proposition should be compared with [4, Theorem 8.1], although we have made two slight

adjustments for our situation. First, we cannot guarantee that gtc ∈ Reg(η), but only that gt+t′c ∈ Reg(η) with

uniform control on |t′|. Second, we prove our result for all t > 3L, instead of 2L. These result in trivial changes

to subsequent estimates in [4]’s argument.

Proof of Proposition 7.4. We begin with a geometric preliminary.

(A) Suppose that c̃1 and c̃2 are geodesic rays in S̃ with c̃1(0) = c̃2(0) and dS̃(c̃1(l), c̃2(l)) ≤ 3d0. The distance

between geodesic rays is a convex function in a CAT(0) space, so dS̃(c̃1(r), c̃2(r)) ≤ 3d0
l r for all r ∈ [0, l].

Therefore, to ensure that dS̃(c̃1(r), c̃2(r)) < δ
2 for all r ∈ [0, 2T ] it is sufficient to have 3d0

l 2T < δ
2 , or

l > 12d0T
δ .

We now begin the proof in earnest. Let δ > 0 and 0 < η < η0
2s be given. Let T (δ) be as in Lemma 2.12. Let

L = max

{
d0,

8d0

η0
, 2T (δ),

12d0T (δ)

δ

}
;

we will highlight the need for each condition on L as we come to it in the proof. Let t > 3L and let γ ∈ Sing.

As usual, we work in S̃. Let R be the maximal, isometrically embedded Euclidean rectangle with γ̃([L, t− L])

as one side, containing no cone points in its interior, and to the right side of γ̃, with respect to its orientation.
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(Throughout this proof, refer to Figure 5. For ease of exposition we will often refer to the orientation as depicted

in that figure in this proof.) Note that if γ̃([L, t− L]) contains any cone points with an angle > π on the right

side of γ̃, then R has height zero. That t > 3L implies R has positive width. By maximality of R, there must be

cone points on the boundary of R, specifically on the bottom side of R, as oriented in Figure 5. Let ξ1 be the

cone point closest to γ̃(0) and ξ2 be the cone point closest to γ̃(t) on the bottom side of R.

Using Lemma 7.2, extend the bottom side of R to a singular geodesic γ̃′ which turns with angle π on the γ̃

side∗ any time it encounters a cone point. (If R has height zero, let γ̃′ = γ̃.) Parametrize γ̃′ so that γ̃′(L) is the

lower-left corner of R (and hence γ̃′(t− L) is the lower-right corner).

Construct geodesic segments of length d0, starting at the points γ̃′(−d02 ) and γ̃′(d02 ), ending below γ̃′, and

perpendicular to γ̃′ in the sense that for each segment, both angles between it and γ̃′ are ≥ π
2 . Connect the

endpoints of these segments with a geodesic segment, forming a quadrilateral which we denote by Q1. Construct

a similar quadrilateral Q2 based on γ̃′ around γ̃′(t) on the same side as Q1. Any point in Q1 (resp. Q2) can be

reached from γ̃′(0) (resp. γ̃′(t)) via a path along γ̃′ of length ≤ d0
2 followed by a perpendicular segment of length

≤ d0. Therefore, for any ζ ∈ Q1, dS̃(γ̃′(0), ζ) ≤ 3
2d0 < 2d0 (the analogous bound holds for Q2) and the diameter

of Qi is bounded by 3d0. Our choice of L ≥ d0 implies that γ̃′(L) and γ̃′(t− L) are not in the quadrilaterals.

γ̃ gtγ̃

d0 d0ζ1

ζ2

ξ1 ξ2

c̃

L L
γ̃′

R

Q1 Q2

Fig. 5. The construction of c = Πt(γ) in Proposition 7.4.

By their construction using d0 from Lemma 2.15, the quadrilaterals Q1 and Q2 must contain cone points.

Let ζ1 be a cone point in Q1 and ζ2 a cone point in Q2. Let t̂ = dS̃(ζ1, ζ2). Extend the geodesic segment [ζ1, ζ2]

to a geodesic c̃, parameterized so that c̃(0) = ζ1 and c̃(t̂) = ζ2, with turning angles equal to exactly half of the

total angle at each cone point ζ1, ζ2, and any cone points encountered over times (−∞, 0] ∪ [t̂,∞). Note that

this condition implies that c is determined entirely by the segment [ζ1, ζ2]. Then, c̃ ∈ Reg(η). An alternate path

from ζ1 to ζ2 is to travel ζ1 → γ̃′(0)→ γ̃′(t)→ ζ2 which has length < 4d0 + t. Thus, t̂ < t+ 4d0. Reversing the

roles of c̃ and γ̃′ also shows t < t̂+ 4d0, so t̂ = t+ t′ with |t′| < 4d0. Then, gt+t′ c̃ ∈ Reg(η) as desired.

We claim that [ξ1, ξ2] ⊆ c̃ ∩R. Consider the geodesic segments [ζ1, ξ1], [ξ1, ξ2], and [ξ2, ζ2]. The triangle

formed by γ̃′(0), ζ1 and ξ1 has dS̃(γ̃′(0), ξ1) ≥ L and as noted above, dS̃(γ̃′(0), ζ1) < 2d0. Using the CAT(0)

∗That is, measured from within the connected component of S̃ \ γ̃′ containing γ̃, the incoming and outgoing directions of γ̃′ make
angle π at any cone point.
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property and an easy Euclidean geometry calculation, the angle between [γ̃′(0), ξ1] and [ζ1, ξ1] at ξ1 is less than

4d0
L . Our assumption that L ≥ 8d0

η0
ensures that this angle is less than η0

2 . An analogous argument bounds the

angle between [ξ2, γ̃
′(t)] and [ξ2, ζ2]. By Lemma 2.15 there is excess angle at least η0 at ξ1 and ξ2. At ξ1 (and

similarly at ξ2, even if ξ1 = ξ2) the angle our concatenation of segments makes on the side towards γ̃ is at least

the angle γ̃′ makes on that side, which by construction is π. On the side away from γ̃, the angle our concatenation

makes is at least L(ξ1)− π − η0 > π. The concatenation of [ζ1, ξ1], [ξ1, ξ2], and [ξ2, ζ2] is therefore a geodesic

segment, and hence it must be a subsegment of c̃, proving the claim.

We now need to show, using our choice of L, that dGS̃(gr∗ c̃, Sing) < δ for all r∗ ∈ [L, t− L]. We do

this by showing that for each such r∗ there is a geodesic γ̃′ ∈ Sing such that dS̃(γ̃′(r), c̃(r)) < δ
2 for all

r ∈ [r∗ − T (δ), r∗ + T (δ)] and then invoking Lemma 2.12.

Let γ̃′0 be the reparameterization of γ̃′ so that c̃(r) = γ̃′0(r) whenever c̃(r) ∈ R. Let [r1, r2] = {r : c̃(r) =

γ̃′0(r) ∈ c̃ ∩R}. (Figure 5 depicts a situation where c̃(r1) = ξ1 and c̃(r2) = ξ2.) For any r ∈ [r1, r2], consider the

geodesic rays c̃(−∞, r) and γ̃′0(−∞, r). They share the point c̃(r) = γ̃′0(r) and at some distance ≥ L ≥ 12d0T (δ)
δ

are both in Q1 and hence ≤ 3d0 apart (with respect to dS̃). Therefore, by (A) at the start of this proof,

for all r ∈ [r1 − 2T (δ), r2], dS̃(c̃(r), γ̃′0(r)) < δ
2 . Applying the same argument to the rays c̃(r,∞) and γ̃′0(r,∞),

shows dS̃(c̃(r), γ̃′0(r)) < δ
2 for all r ∈ [r1, r2 + 2T (δ)]. As γ̃′0 ∈ Sing, by Lemma 2.12, dGS̃(gr∗ c̃,Sing) < δ for all

r∗ ∈ [r1 − T (δ), r2 + T (δ)].

If this covers all times in [L, t− L], we are done with this part of the proof. If not, we continue as follows.

Assuming r1 − T (δ) > L, consider the geodesic segment [ζ1, ξ1]. Let [ξ−1 , ξ1] be the maximal subsegment of

[ζ1, ξ1] containing no cone points in its interior. Extend [ξ−1 , ξ1] to a geodesic γ̃′−1 in Sing lying between c̃ and

γ̃′0, parametrized so that γ̃′−1(r1) = ξ1 = c̃(r1). First note that over the interval [r1 − 2T (δ), r1], γ̃′−1(r) is at

least as close to γ̃′0(r) as c̃(r) is, and by our work above, this distance is bounded above by δ
2 . By Lemma 2.12,

dGS̃(gr1−T (δ)γ̃
′
0, gr1−T (δ)γ̃

′
−1) < δ. Second, we can argue regarding c̃ and γ̃′−1 exactly as we did regarding c̃ and

γ̃′0. They form rays with a common endpoint which after some distance > L are still within 3d0 of each other,

which as noted above allows us to show they are δ close in dGS̃ for an interval of time below r1. This interval

will either extend to L as desired, or will end at some r0 − T (δ) where c̃ and γ̃′−1 branch apart at a cone point.

We then repeat our argument at that cone point, finding γ̃′−2 ∈ Sing shadowing c̃ further, and so on, until we

have reached time L. Exactly the same argument applies beyond ξ2, constructing γ̃′1, γ̃
′
2, . . . ∈ Sing as necessary

to shadow c̃ in dGS̃ until time t− L.

It remains to establish that for all r ∈ [L, t− L], gr c̃ and γ̃ lie in the same connected component of B(Sing, δ).

We do this by showing that one can get from γ̃ to gr c̃ by a series of ‘moves,’ each of which can be realized by a

continuous path in B(Sing, δ).

Move 1: geodesic flow
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If γ̃ ∈ Sing then for all r, grγ̃ ∈ Sing with the flow itself providing a continuous path between the two, so

γ̃ and grγ̃ are both in the same connected component of Sing itself, and hence of B(Sing, δ).

Move 2: ‘pivot’

Suppose γ̃i, γ̃i+1 ∈ Sing with γ̃i(0) = γ̃i+1(0) = ξ ∈ C̃on, dGS̃(γ̃i, γ̃i+1) < δ, and suppose that the angle

between γ̃i and γ̃i+1 at ξ is less than L(ξ)− 2π. Note that any geodesic ray starting from ξ which lies between

γ̃i(−∞, 0) and γ̃i+1(−∞, 0) can be concatenated with γ̃i(0,+∞) to form a geodesic. Similarly, any ray between

γ̃i(0,+∞) and γ̃i+1(0,+∞) can be concatenated with γ̃i+1(−∞, 0) to form a geodesic.

Let γ̃i+1 · γ̃i be the concatenation of γ̃i+1(−∞, 0] with γ̃i[0,+∞). Note that dGS̃(γ̃i, γ̃i+1 · γ̃i) and dGS̃(γ̃i+1 ·

γ̃i, γ̃i+1) are both less than dGS̃(γ̃i, γ̃i+1) and hence less than δ. Indeed, the integrals computing dGS̃(γ̃i, γ̃i+1 · γ̃i)

and dGS̃(γ̃i+1 · γ̃i, γ̃i+1) will each match the integral to compute dGS̃(γ̃i, γ̃i+1) on one side of t = 0, and will

replace the integral on the other side of t = 0 by zero, if anything decreasing the distance.

We ‘pivot’ from γ̃i to γ̃i+1 in two steps. First, let ζv be a continuous and monotonic path in ∂∞S̃ from

ζ0 = γ̃i(−∞) to ζ1 = γ̃i+1(−∞). Apply Lemma 7.3 to get a continuous path v 7→ c̃v from γ̃i to γ̃i+1 · γ̃i such that

for all v, dGS̃(γ̃i, c̃v) ≤ dGS̃(γ̃i, γ̃i+1 · γ̃i) < δ. Second, let ζ ′v be a continuous and monotonic path from γ̃i(+∞)

to γ̃i+1(+∞) and apply Lemma 7.3 to get a continuous path v 7→ c̃′v from γ̃i+1 · γ̃i to γ̃i+1. Again, for all v,

dGS̃(c̃′v, γ̃i+1) < dGS̃(γ̃i+1 · γ̃i, γ̃i+1) < δ; this time we apply the distance non-increasing property obtained in

Lemma 7.3 to the reverse of the path v 7→ c̃′v, which continuously moves from γ̃i+1 to γ̃i+1 · γ̃i. Overall, we have

a path of geodesics that remains in B(Sing, δ) throughout.

Move 3: ‘slide’

Suppose that R is an isometrically embedded Euclidean rectangle in S̃. (Note that this implies R contains

no cone points in its interior.) Let γ̃, γ̃′ ∈ Sing be geodesics which extend the top and bottom sides of R,

respectively, with dGS̃(γ̃, γ̃′) < δ. Let {cv} be a continuous path of horizontal (i.e., parallel to γ̃ and γ̃′ within

R) geodesic segments connecting the two sides of R, which move monotonically downward through R, with

c0 = γ̃ ∩R and c1 = γ̃′ ∩R.

For each v, let γ̃uv be the ‘uppermost’ geodesic extension of cv, that is, the extension which turns with

angle π on the γ̃-side at any cone point it hits. Let γ̃lv be the ‘lowermost’ geodesic extension of cv, that is, the

extension which turns with angle π on the γ̃′-side at any cone point it hits. Since the distance between geodesics

is a convex function and since cv is parallel to γ̃ and γ̃′ over R, both γ̃uv and γ̃lv lie between γ̃ and γ̃′.

If γ̃uv = γ̃lv, set γ̃v = γ̃uv = γ̃lv. This happens if and only if γ̃v hits no cone points. Since there are countably

many cone points in S̃, there is a countable set {vn} ⊂ [0, 1] for which γ̃uvn 6= γ̃lvn . Let {In} be a corresponding

collection of closed real intervals with
∑
|In| = 1. Cut [0, 1] at each vn and glue in the interval In, resulting

in an interval of length 2. Adjust the subscripts where γ̃v has already been defined accordingly. For each n, if
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In = [an, bn] set γ̃an = γ̃uvn and γ̃bn = γ̃lvn . For all v ∈ In, use Lemma 7.3 to fill in a continuous path v 7→ γ̃v

from γ̃an to γ̃bn .

The result is a path v 7→ γ̃v from γ̃ to γ̃′ which we claim is continuous. Continuity at any v0 which is in the

interior of one of the inserted intervals In is provided by Lemma 7.3. If v0 is on the boundary of some In and v

approaches v0 from inside In, Lemma 7.3 again applies. Otherwise, γ̃v0 is in Sing and as v → v0, γ̃v approaches

γ̃v0 from a side on which γ̃v0 always turns with angle π. In this case, let ε > 0 be given. Since there are only

finitely many cone points in any compact region of S̃, for v sufficiently close to v0 there are no cone points in

the convex hull of γ̃v0 [−T (ε), T (ε)] and γ̃v[−T (ε), T (ε)]. Perhaps making v even closer to v0, this convex hull is

a rectangle with width < ε
2 . Then, by Lemma 2.12, dGS̃(γ̃v, γ̃v0) < ε, proving continuity at v0.

Finally, we claim that dGS̃(γ̃, γ̃v) is non-decreasing. Let a < b be in [0, 2]. If a, b ∈ In, dGS̃(γ̃, γ̃a) ≤ dGS̃(γ̃, γ̃b)

by Lemma 7.3. Therefore, to prove the distance is non-decreasing in general we just need to show dGS̃(γ̃, γ̃a) ≤

dGS̃(γ̃, γ̃b) when a and b are close and a is the lower endpoint of some In or is in the complement of the {In}.

In either case, γ̃a is a singular geodesic which makes angle π at any cone points it encounters on the side away

from γ̃. For each fixed t consider the geodesic segment cv,t = [γ̃(t), γ̃v(t)] and how it varies with v. We claim

the length of cv,a is at most the length of cv,t for small enough t > a, which together with the formula for dGS̃

will establish the desired result. As v increases from a, γ̃v(t) will move along a geodesic path perpendicular to

γ̃a on the side of γ̃a away from γ̃. Indeed, for all b > a small enough that no cone points are in the convex

hull of γ̃a[0, t] and γ̃b[0, t], by construction, γ̃b[0, t] will simply be the translation of γ̃a[0, t] across an embedded

Euclidean rectangle. Take such a b > a. Then, consider the geodesic triangle with sides ca,t, cb,t and [γ̃a(t), γ̃b(t)].

Since [γ̃a(t), γ̃b(t)] is perpendicular to γ̃a on the side away from γ̃ and ca,t hits γ̃a(t) from the side towards γ̃,

the angle between ca,t and [γ̃a(t), γ̃b(t)] is at least π
2 . By comparison with a Euclidean triangle and the CAT(0)

property, cb,t is longer than ca,t giving the desired result.

Therefore, γ̃v is in the same connected component of B(Sing, δ) for all v for this ‘slide’ move.

We return now to our construction of c̃. For any r ∈ [L, t− L], we can reach gr via the following series of

the moves noted above. First, we move γ̃ → gt/2γ̃ by geodesic flow. Second, we slide gt/2γ̃ down across R (if

R has nonzero height) to a geodesic in the orbit of γ̃′0 using our ‘slide’ move. We break this move down into

a sequence of small ‘slide’ moves between geodesics γ̃vn in Sing. Since t > 3L and L ≥ 2T (δ) if we choose vn

so that γ̃vn ∩R and γ̃vn+1 ∩R are within δ/2 vertically in R, by Lemma 2.12, dGS̃(γ̃vn , γ̃vn+1) < δ. Therefore,

this series of moves stays in the same connected component of B(Sing, δ). Finally, we apply a series of ‘pivot’

moves and the geodesic flow to get to grc via the geodesics γ̃′i introduced in our construction above. Our work

in the construction showed that all the ‘pivot’ moves involved are between geodesics within δ of one another.

Therefore, in total, we have a continuous path from γ̃ to gr c̃ in B(Sing, δ), completing the proof of Proposition

7.4.
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The second step in the argument for the pressure gap is to prove the following Lemma, which uniformly

controls how many geodesics in Sing can have image under Πt near to a fixed geodesic. Recall that

dGS,t(γ1, γ2) = max
s∈[0,t]

dGS(gsγ1, gsγ2),

and that a subset of GS is (t, 2ε)-separated if its members are pairwise distance at least 2ε apart with respect

to dGS,t.

Lemma 7.5 (Compare with Prop. 8.2 in [4]). For all ε > 0, there exists some C(ε) > 0 such that if Et ⊂ Sing

is a (t, 2ε)-separated set for some t > 3L, then for any w ∈ GS,

#{γ ∈ Et | dGS,t(w,Πt(γ)) < ε} ≤ C.

Proof . It is sufficient to prove the result in GS̃.

Let d0 be as in Lemma 2.15(a). Fix w ∈ GS̃, and let ε > 0, t > 3L, and Et be given.

Suppose that dGS,t(w, c) < ε. Then by definition dGS̃(grw, grc) < ε for all r ∈ [0, t]. By Lemma 2.11, that

dGS̃(w, c) < ε implies dS̃(w(0), c(0)) < 2ε and that dGS̃(gtw, gtc) < ε implies dS̃(w(t), c(t)) < 2ε.

By Proposition 7.4, any geodesic c in Πt(Sing) has c(0) ∈ C̃on and c(t+ t′) ∈ C̃on for some |t′| < 4d0. Using

what we noted above, the cone point at c(0) must be within dS̃-distance 2ε of w(0) and the cone point at c(t+ t′)

must be within dS̃-distance 2ε+ 4d0 of w(t).

As S is compact and Con is a discrete subset, for any R > 0, NR = maxp∈S̃ #{C̃on ∩BR(p)} is finite. Let

C1(ε) = N2εN2ε+4d0 . As specified in Proposition 7.4, any element c of Πt(Sing) is entirely determined by the

cone points c(0) and c(t+ t′). Thus, there are at most C1(ε) elements c ∈ Πt(Sing) with dGS̃(w, c) < ε.

Now we want to bound #{γ ∈ Et | Πt(γ) = c} for any c ∈ Πt(Sing). For γ ∈ Et, the construction of

Πt(γ) shows that dS̃(γ(0), c(0)) < 2d0 and dS̃(γ(t), c(t+ t′)) < 2d0. Therefore, γ(−T (ε)) ∈ B(c(0), 2d0 + T (ε))

and γ(t+ T (ε)) ∈ B(c(t+ t′), 2d0 + T (ε)), where T (ε) is as in Lemma 2.12. Let P be an ε
8 -spanning set for

B(c(0), 2d0 + T (ε)) with respect to dS̃ and Q an ε
8 -spanning set for B(c(t+ t′), 2d0 + T (ε)) with respect to dS̃ .

By the compactness of S, there exists some C2(ε) such that #P and #Q are bounded above by C2(ε). For each

(p, q) ∈ P ×Q, extend [p, q] to a geodesic ηp,q with ηp,q(−T (ε)) = p.

Since P and Q are ε
8 -spanning, there exist (p, q) ∈ P ×Q such that dS̃(γ(−T (ε)), p) < ε

8 and dS̃(γ(t+

T (ε)), q) < ε
8 . We immediately have that dS̃(γ(−T (ε)), ηp,q(−T (ε))) < ε

8 . In addition, γ[−T (ε), t+ T (ε)] and

[p, q] are geodesic segments whose endpoints are each less than ε
8 apart. Since geodesic segments in S̃ minimize
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length, the length of [p, q] is within ε
4 of t+ 2T (ε), the length of γ[−T (ε), t+ T (ε)]. Therefore we also have

dS̃(γ(t+ T (ε)), ηp,q(t+ T (ε))) ≤ dS̃(γ(t+ T (ε)), q) + dS̃(q, ηp,q(t+ T (ε))

<
ε

8
+
ε

4
<
ε

2
.

Using convexity of the distance between geodesics in a CAT(0) space and our bounds on the distances

between the pairs of endpoints, we have

dS̃(γ(r), ηp,q(r)) <
ε

2
for all r ∈ [−T (ε), t+ T (ε)].

Then by Lemma 2.12, dG̃S(grγ, grηp,q) < ε for all r ∈ [0, t], or, equivalently, dGS̃,t(γ, ηp,q) < ε.

We can conclude that #{γ ∈ Et | Πt(γ) = c} ≤ #{ηp,q} ≤ C2(ε)2. Indeed, if there are more than Cs(ε)
2

elements in Et which have image c under Πt, then some two of them must both be within dGS̃,t-distance ε of the

same ηp,q and hence less than 2ε apart with respect to dGS̃,t, contradicting the fact that Et is (t, 2ε)-separated.

Putting these estimates together, #{γ ∈ Et | dGS,t(w,Πt(γ)) < ε} ≤ C1(ε)C2(ε)2, completing the proof.

The third step of the argument closely follows [4], as we now outline. First, by Lemmas 4.1 and 4.2 of [10],

for any ε > 0 and t > 0,

sup

{∑
γ∈E

esupξ∈Bt(γ,ε)
∫ t
0
φ(grξ)dr

∣∣∣∣ E ⊂ Sing is (t, ε)-separated

}
≥ etP (Sing,2ε,φ). (12)

To apply this fact from [10] here, we just need to recall that Sing is compact (noted in Definition 2.4).

We now use the fact that φ is locally constant on a neighborhood of Sing. For sufficiently small ε, the

left-hand side of the inequality above is equal to

Λ(Sing, φ, ε, t) := sup

{∑
γ∈E

e
∫ t
0
φ(grγ)dr

∣∣∣∣ E ⊂ Sing is (t, ε)-separated

}
. (13)

Combining (12) and (13) and using the fact that gt is entropy-expansive (Lemma 2.17) exactly as in [4], for

sufficiently small ε,

Λ(Sing, φ, ε, t) ≥ etP (Sing,φ). (14)

Fix 0 < η < η0
2 where η0 is from Lemma 2.15(b). Note that Reg(η) has nonempty interior. Pick δ > 0 small

enough that Λ(Sing, φ, 2δ, t) ≥ etP (Sing,φ), φ is locally constant on B(Sing, δ), and by Lemma 3.10, λ(γ) < η for

all γ ∈ B(Sing, 2δ). Then we proceed exactly as in [4], invoking Proposition 7.4 as a direct replacement of their

Theorem 8.1 and Lemma 7.5 as a direct replacement for their Proposition 8.2. The argument produces the

following Lemma.
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Lemma 7.6 (Lemma 8.4 in [4]). For sufficiently small δ > 0, there is a (t, 2δ)-separated set Et in Sing such

that there is a (t, δ)-separated set E′′t ⊂ Πt(Et) satisfying

∑
w∈E′′t

einfu∈Bt(w,δ)
∫ t
0
φ(gsu)ds ≥ βetP (Sing,φ)

where β = 1
C e
−6L‖φ‖, and C is as in Lemma 7.5.

Proof . The only minor change needed in substituting our Proposition 7.4 for their Theorem 8.1 is to note that

our condition on t is that it be > 3L, whereas theirs is that it be > 2L. This gives us β = 1
C e
−6L‖φ‖ instead of

β = 1
C e
−4L‖φ‖. This results in merely cosmetic changes to the rest of the argument in [4].

Note that {(w, t) : w ∈ E′′t } is in G4d0(η), using the notation of Definition 5.7.

The final step in the argument is to use specification to string together orbit segments from E′′t in many

different orders so as to produce a large collection of long orbit segments which together produce more pressure

than P (Sing, φ). In [4] this is undertaken in Section 8.4, and at this point the argument is almost entirely

dynamical. It uses the estimate of Lemma 7.6 together with strong specification for G4d0(η) as given by

Corollary 5.8. The one geometric piece of information used is that λ(γ) < η for all γ ∈ B(Sing, 2δ). Hence,

we assumed this when choosing δ above, invoking Lemma 3.10. This completes the proof of Theorem 7.1.

Applying Theorem 7.1 with φ = 0 gives the following.

Corollary 7.7. htop(gt|Sing) < htop(gt).

With the pressure gap condition for such potentials in hand we briefly note a second class of potentials

for which it holds. Proposition 4.7 of [6] notes that if the pressure gap P (Sing, φ) < P (φ) holds for φ, then

for any function sufficiently close to φ (specifically with 2‖φ− ψ‖ < P (φ)− P (Sing, φ)) and any constant c,

P (Sing, ψ + c) < P (ψ + c). Applying this to the locally constant functions φ discussed in this section gives us a

further class of potentials with a pressure gap. Applying it with φ = 0 gives us one class of particular note:

Corollary 7.8. If ψ is a continuous potential with ‖ψ‖ < 1
2 (htop(gt)− htop(gt|Sing)), where htop is the

topological entropy, then P (Sing, ψ) < P (ψ).

8 Equilibrium states are Limits of Weighted Periodic Orbits

We can show that weighted periodic orbits equidistribute to the equilibrium states we have constructed, following

a method of [4]. Throughout this section, we write GM := GM (η) (see Definition 5.7) as we will work with a

fixed η throughout.

Define the equivalence class of a closed geodesic [γ] to be all geodesics η ∈ GS for which γ = gtη for some

t ∈ R. Then let PerR[Q− δ,Q] be the set of equivalence classes of regular closed geodesics with period in

[Q− δ,Q]. Now consider such a regular closed geodesic and define µγ to be the normalized Lebesgue measure
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supported on γ and Φ(γ) =
∫ `(γ)

0
φ(guγ) du. These definitions agree for all representatives of an equivalence

class, so we define µ[γ] = µγ and Φ([γ]) = Φ(γ). We consider the weighted sum

µQ,δ =
1

ΛR(Q, δ, φ)

∑
[γ]∈PerR[Q−δ,Q]

eΦ([γ])µ[γ],

where ΛR(Q, δ, φ) =
∑

[γ]∈Per[Q−δ,Q]

eΦ([γ]) is our normalizing constant. When lim
Q→∞

1
Q log ΛR(Q, δ, φ) exists, it can

be thought of as the pressure of closed saddle connection paths, and we write it as PR,δ(φ).

Theorem 8.1. We use the notation above. Let φ be a Hölder potential with P (Sing, φ) < P (φ), and let µ be

the unique equilibrium state for φ. Then, for all δ > 0, PR,δ(φ) = P (φ) and in the weak-* topology we have

lim
Q→∞

µQ,δ = µ.

Remark. Note that this provides a way to identify interesting potentials, by considering geometrically relevant

ways to weight closed geodesics. For instance, one could potentially try to identify a continuous function that

weights γ by the number of conical points it turns at.

We first prove a lemma that will be necessary throughout this section.

Lemma 8.2. Let 2ε be less than the injectivity radius of S. For all Q� δ > 0, any set of representatives of

the equivalence classes in PerR[Q− δ,Q] is (Q, ε)-separated.

Proof . Consider [γ1], [γ2] ∈ PerR[Q− δ,Q], and let γ1, γ2 be representatives. Furthermore, suppose

dGS(gtγ1, gtγ2) < ε for all t ∈ [0, Q]. By Lemma 2.11, dS(γ1(t), γ2(t)) < 2ε for all t ∈ [0, Q]. By our choice of

ε, these geodesics are freely homotopic and represent the same element g of the fundamental group. Letting

γ̃i be lifts of γi, we have that both γ̃1 and γ̃2 are axes of g. By [3, Theorem II.6.8], γ̃1 and γ̃2 are parallel,

and so they bound a flat strip by the Flat Strip Theorem. This contradicts the assumption that γ1 and γ2 are

regular.

We have the following proposition, which follows from the proof of Variational Principle found in [21,

Theorem 9.10] because PerR[Q− δ,Q] is (Q, ε)-separated for all sufficiently small ε:

Proposition 8.3. If µ is the unique equilibrium state for φ, then for all δ > 0 such that lim
Q→∞

1
Q log ΛR(Q, δ, φ) =

P (φ), we have lim
Q→∞

µQ,δ = µ.

In order to apply this proposition, we need to establish a growth rate for ΛR(Q, δ, φ) for all sufficiently

small δ > 0, which is done in Propositions 8.7 and 8.8 below.

First, we show that the growth rate for ΛR(Q, δ, φ) is fast enough. In order to do this, we need to be

able to approximate (γ, t) ∈ GM by closed geodesics of a bounded length. This is encapsulated in the following

proposition.

Proposition 8.4. For all δ > 0, there exists T ′ such that for all (γ, t) ∈ GM with t > θ0
η + 2M , there is some

regular closed geodesic ξ with period in [t+ T ′ − δ, t+ T ′] such that dGS(guγ, guξ) < δ for all u ∈ [0, t].
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Proof . First, we explain how to obtain the statement of the proposition for (γ, t) ∈ G. Let δ > 0, and let τ̂

be the specification constant for G with shadowing scale δ
8 (see Proposition 5.6). We will show that T ′ = τ̂ + δ

2

satisfies the requirements of the Proposition. Let (γ, t) ∈ G, and let ξ be a geodesic guaranteed by specification

which shadows (γ, t) twice in succession. Now recall from Proposition 5.6 that there exists a closed interval

I ⊃ [ θ02η , t−
θ0
2η ] such that ξ contains two copies of γ(I). In other words, there exist r1, r2 > 0 such that

ξ(ri + r) = γ(r) for all r ∈ I, where i ∈ {1, 2}. Thus, we can choose ξ to be a closed geodesic, and observe that

its length is given by r2 − r1. Now, since dGS(g θ0
2η
ξ, g θ0

2η
γ) ≤ δ

8 by Proposition 5.6, we can apply Lemma 2.11

to show dS(ξ( θ02η ), γ( θ02η )) ≤ δ
4 . Thus, |r1| ≤ δ

4 . Similarly, considering the second copy of (γ, t) that ξ shadows,

we have dS(ξ( θ02η + t+ τ̂), γ( θ02η )) ≤ δ
4 , and so r2 ∈ [τ̂ + t− δ

4 , τ̂ + t+ δ
4 ]. Hence, ξ is a regular closed geodesic

with length in [τ̂ + t− δ
2 , τ̂ + t+ δ

2 ]. Taking T ′ = τ̂ + δ
2 , we are done. In order to adapt this argument to GM

for τ > 0, note that we achieve specification for GM by considering the specification constant for G at a smaller

scale (which depends on M). (See Corollary 5.8.)

To establish the desired growth rates on ΛR(Q, δ, φ), we need two technical counting results from [10].

These results are used implicitly in the proof of Theorem 1.1, and we do not provide a self-contained proof in

the interest of concision. However, we do discuss why they hold in our setting.

As noted in Section 1.1, the conditions that we check differ slightly from those used in [10]. The only case

where they are not immediately stronger conditions is the pressure estimate. In [10], the authors need to define the

pressure of a discretized collection of orbit segments P ([P] ∪ [S], φ) < P (φ). Because we use λ-decompositions,

we do not need to consider the pressure of collections of orbit segments (this is the content of [5, Lemma 3.5,

Theorem 3.6] and [6, Proposition 4.2]). Instead, it suffices to show that P
(⋂

t∈R gtλ
−1(0), φ

)
< P (φ), which is

precisely the condition P (Sing, φ) < P (φ).

The lemmas we will use are the following.

Lemma 8.5 ([10, Lemma 4.12]). There exist C, ε,M > 0 such that for all t > 0, there exists a (t, ε)-separated

set Et with the following properties:

•
∑

γ∈Et exp
(∫ t

0
φ(guγ) du

)
≥ CetP (φ)

• Et ⊂ {γ ∈ GS | (γ, t) ∈ GM}.

Lemma 8.6 ([10, Lemma 4.11]). For all ε > 0 sufficiently small, there exists a constant D > 0 such that for

any (t, ε)-separated set Et, we have

∑
γ∈Et

exp

(∫ t

0

φ(guγ) du

)
≤ DetP (φ).

We are now ready to prove our growth rates.
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Proposition 8.7. For all δ > 0 there exists a constant Ĉ such that

ΛR(Q, δ, φ) ≥ Ĉ

Q
eQP (φ)

for all sufficiently large Q.

The proof of this proposition follows almost exactly the proof of the lower bound in [4, Proposition 6.4],

replacing the use of [4, Corollary 4.8] with Proposition 8.4. We include it here for completeness.

Proof . Let C, ε,M and Et be as in Lemma 8.5. Now, choose ρ < ε
3 small enough that the Bowen property

at scale ρ holds on GM (that this is possible follows immediately from the fact that G has the Bowen

property). Then, by Proposition 8.4, there exists T ′ > 0 so that when t > θ0
η + 2M , there is an injective

mapping from Et to a set Pt of regular closed geodesics with periods in [t+ T ′ − δ, t+ T ′], i.e. for any ξ ∈ Pt

there exists u ∈ [t+ T ′ − δ, t+ T ′] such that guξ = ξ. In particular, for all γ ∈ Et, there exists ξ ∈ Pt so that

dGS(guξ, guγ) ≤ ρ for all u ∈ [0, t]. Because the mapping is injective and φ has the Bowen property at scale ρ

on GM , it follows from Lemma 8.5 that

∑
ξ∈Pt

exp

(∫ t

0

φ(guξ) du

)
≥ Ce−KetP (φ)

for some constant K independent of t. Now, writing Φ(ξ) =
∫ `(ξ)

0
φ(guξ) du, we can then write

∑
ξ∈Pt

exp(Φ(ξ)) ≥
∑
ξ∈Pt

exp

(∫ t

0

φ(guξ) du− T ′‖φ‖
)
≥ Ce−(K+T ′‖φ‖)etP (φ).

At this point, we can almost relate this to ΛR(Q, δ, φ). However, there is a possibility that ξ1, ξ2 ∈ Pt both

represent the same closed geodesic path, i.e., there exists u so that guξ1 = ξ2. As Pt is (t, ρ)-separated and

dGS(η, guη) = u, there are at most t+T ′

ρ such repetitions. Hence, if Q ≥ T , by setting Q = t+ T ′, we have

ΛR(Q, δ, φ) ≥
(
ρ

Q

)
Ce−Ke−T

′(‖φ‖+P (φ))eQP (φ).

In order to see that the growth rate is not too large, we use Lemma 8.2 and Lemma 8.6.

Proposition 8.8. For all δ > 0 there exists a constant D > 0 such that

ΛR(Q, δ, φ) ≤ Deδ‖φ‖eQP (φ)

for all sufficiently large Q.
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Proof . By Lemma 8.2, any set of representatives of PerR[Q− δ,Q] is (Q, ε)-separated for ε sufficiently

small, and in particular, small enough to apply Lemma 8.6. Now, given [γ] ∈ PerR[Q− δ,Q], observe that∣∣∣Φ(γ)−
∫ Q

0
φ(guγ) du

∣∣∣ ≤ δ‖φ‖, because we know the period of γ is at least Q− δ. Consequently, it follows that

for such an ε, there exists D > 0 such that

ΛR(Q, δ, φ) ≤ eδ‖φ‖
∑

[γ]∈PerR[Q−δ,Q]

exp

(∫ Q

0

φ(guγ) du

)
≤ eδ‖φ‖DeQP (φ).

Proof of Theorem 8.1. Propositions 8.7 and 8.8 imply that

lim
Q→∞

1

Q
log ΛR(Q, δ, φ) = P (φ).

By Proposition 8.3, it follows that lim
Q→∞

µQ,δ = µ.
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